

Catalog No.

FINAL REPORT

Determining the Effects of Ethanol on Pump Station Facilities

PRCI Project CPS-9-2 Report – Phase 1 Contract PR-186-09204 DNV Columbus, Inc. Project EP001681

Prepared for the

Compressor and Pump Station Technical Committee of

Pipeline Research Council International, Inc.

Prepared by the following Research Agency:

DNV Columbus, Inc.

Authors:

Gregory T. Quickel, M.S. and John A. Beavers, Ph.D.

April 23, 2010

VERSION	DATE OF LAST REVISION	DATE OF UPLOADING	COMMENTS
0		January 26, 2010	Draft Report
1	April 19, 2010	April 23, 2010	Final Report

PRCI DISCLAIMER

This report was prepared by DNV Columbus, Inc. as an account of contracted work sponsored by the Pipeline Research Institute International (PRCI). Neither DNV Columbus, Inc., PRCI, members of these companies, nor any person acting on their behalf:

- Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, methods, or process disclosed in this report may not infringe upon privately owned rights; or
- Assumes any liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

RESEARCH SUMMARY

Title:	Determining the Effects of Ethanol on Pump Station Facilities
Contractor:	DNV Columbus, Inc. (formerly CC Technologies, Inc.)
Principal Investigators:	Gregory T. Quickel, M.S. and John A. Beavers, FNACE, Ph.D.
Objectives:	The objective of this project was to investigate ethanol – materials compatibility issues for components involved in pump station facilities.
Scope:	The project is divided into three phases; Survey of Knowledge and Gaps (Phase 1), Detailed Study to Close Gaps Identified in Phase 1 (Phase 2), and Development of Guidelines (Phase 3). This report summarizes the results of Phase 1. This phase consisted of three Tasks, Industry Survey (Task 1), Literature Search (Task 2), and Report (Task 3).
Technical Perspective:	Ethanol has been used for the last several years as an environmentally friendly alternative to methyl tertbutyl ether (MTBE), which is an oxygenate additive to gasoline, to increase octane levels, and to facilitate the combustion process. However, the need to find alternatives to imported oil and gas has spurred the increased use of ethanol as an alternative fuel source. Further, ethanol is being promoted as a potential trade-off for CO ₂ emissions from the burning of fossil fuels since CO ₂ is consumed by the plants used as the ethanol source. Legislation mandates a significant increase in ethanol usage as fuel over the next twenty years. The widespread use of ethanol will require efficient and reliable transportation from diverse ethanol producers to distribution terminals. Pipelines are, by far, the most cost-effective means of transporting large quantities of liquid hydrocarbons over long distances. For transporting ethanol, both existing pipeline infrastructure and new pipeline construction are being contemplated.

Technical Perspective: (continued)	ethanol-gasoline blends in pipeline systems, investigation of the effects of ethanol on other components, such as pumps, valves, screens, springs, and metering devices should be investigated. These components may have different materials (e.g., non-ferrous alloys), different types of loading, and different exposure conditions.
Technical Approach:	The first task in Phase 1 of this project involved sending out an industry survey regarding materials in pump stations. This task was performed to determine what components are important from a facilities point of view and what materials are used in these components. The information from the survey was organized into a table that is attached as an appendix to this report. Additionally, manufacturers of the components were contacted in order to determine the materials present in the components in the pump stations. The requests for bill of materials or materials for specific part numbers were performed by email and/or phone calls.
Approacn:	The second task involved performing a literature search. The survey focused on data from the literature on the ethanol exposure effects of materials involved in various pump station components. The open literature, as well as company reports, was considered. Previous literature surveys conducted for PRCI SCC 4-1 and 4-4, and API, were utilized. The open literature search was performed using two search engines; Engineering Village and Science Direct. The keywords in the search included ethanol, corrosion, failure, various non-ferrous metals, stainless steels, and elastomers/plastics.
Results:	A number of different materials were found to be present in the components in pump stations. Metals included carbon and low alloy steels, stainless steels, pure nickel, bronzes, and aluminum alloys. There was a variety of stainless steels in pump station components including 300 series (austenitic, high nickel), 400 series (ferritic/martensitic, low nickel) and precipitation hardened alloys. Zinc and titanium were included in the literature search results; although they were not identified in pump station equipment. Non- metallic materials in pump station components include ceramics, fiberglass, Buna N and butadiene rubbers, polyurethane, Teflon, PEEK, Viton®, and nylon.
	No information was found on the performance of ceramic materials in ethanol and the literature on the performance of metallic materials in ethanol is relatively limited. More information was found on elastomer compatibility in ethanol. Information on compatibility in actual FGE was generally more limited than that in other ethanolic solutions.

Results: (continue)	The materials compatibility data were divided into four different categorizations. <i>Not Compatible</i> indicates that sufficient information was found to establish that the class of materials is not compatible. <i>Probably Not Compatible</i> indicates that information was limited but the available information suggests that the class of materials is not compatible. <i>Probably Compatible</i> indicates that information was limited but the available information suggests that the class of materials is compatible. <i>Compatible</i> indicates that information was found to establish that the class of materials is compatible. <i>Compatible</i> indicates that sufficient information was found to establish that the class of materials is compatible. <i>Compatible</i> indicates that sufficient information was found to establish that the class of materials is compatible. <i>Zinc</i> and aluminum are not compatible metallic materials in ethanol. Aluminum has exhibited pitting and SCC in ethanol, while zinc has exhibited high rates of general corrosion, pitting, and intergranular attack in ethanol. Titanium is probably not compatible, as it has been reported to be susceptible to SCC in ethanol. With the exception of brasses and other copper alloys that contain significant concentrations of zinc, copper base alloys, nickel base alloys, and stainless steels are probably compatible in formation on this failure mode and the SCC experience with carbon steels. There was insufficient information in the literature to confirm the compatibility of any metallic materials.
Project Implications:	 There was insufficient information in the literature to confirm the compatibility of any of the metallic materials. Additional research is necessary, primarily in the area of SCC, to confirm the compatibility of the metallic materials in ethanol. These materials include copper base alloys (excluding brasses), nickel base alloys, and stainless steels. Aluminum alloys, which are found in some pump station components, should not be used in ethanol service. Brasses, which contain zinc, are likely to exhibit corrosion problems.

Project Implications: (continued)	 A number of elastomeric materials are compatible in ethanol, including Teflon, PEEK, and Viton®. Other elastomers, nitrile rubber, and nylon probably are compatible in ethanol but might exhibit swelling problems in gasoline or ethanol-gasoline blends. One Viton®, Viton® A, also exhibits swelling problems in gasoline and ethanol - gasoline blends containing high gasoline concentrations. Polyurethane is not compatible with ethanol.
Project Manager:	John Beavers

REPORT DOCUME	NTATION PAGE		orm Approved B No. 0704-0188	
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, D.C. 20503.			y other aspect of this collection of information	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DAT	TES COVERED	
	April 23, 2010	Fii	nal Report	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS	
Determining the Effect	s of Ethanol on Pump Sta	ation Facilities	PRCI Contract No.	
6. AUTHOR(S) John A. Beavers			PR-186-09204	
7. PERFORMING ORGANIZATION NAME			8. PERFORMING ORGANIZATION	
DNV Columbus, Inc.			REPORT NUMBER	
5777 Frantz Road, Dublin, OH 43017-1386			EP001681	
9. SPONSORING/MONITORING AGENCY			10. SPONSORING/MONITORING	
Pipeline Research Council International (PRCI)			AGENCY REPORT NUMBER	
3141 Fairview Park Drive, Suite 525, Falls Church, Virginia 22042				
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE	
13. ABSTRACT				

There is interest within the pipeline industry in transporting fuel grade ethanol in petroleum pipelines. A significant issue is compatibility of the pipeline materials with ethanol. Other research programs are addressing compatibility issues with elastomers and pipeline steel construction materials. The objective of this project is to investigate ethanol - materials compatibility issues for components involved in pump station facilities. The project is divided into three phases; Survey of Knowledge and Gaps (Phase 1), Detailed Study to Close Gaps Identified in Phase 1 (Phase 2), and Development of Guidelines (Phase 3).

This report summarizes the results of Phase 1. This phase consisted of three Tasks; Industry Survey (Task 1), Literature Search (Task 2), and Report (Task 3). There was insufficient information in the literature to confirm the compatibility of any of the metallic materials, primarily because of the absence of information on the stress corrosion cracking behavior. Never the less, several of these metallic materials are probably compatible; these include copper base alloys (excluding brasses), nickel base alloys, and stainless steels. A number of elastomeric materials are compatible in ethanol, including Teflon, PEEK, and Viton®. Other elastomers, nitrile rubber, and nylon probably are compatible in ethanol but might exhibit swelling problems in gasoline or gasoline ethanol blends. One Viton®, Viton® A, also exhibits swelling problems in gasoline and ethanol-gasoline blends containing high gasoline concentrations. Polyurethane is not compatible with ethanol.

	racking, SCC, Corrosion, Co ump Station Facilities, Non f	1 V	 15. NUMBER OF PAGES 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev.2-89)

DET NORSKE VERITAS

Final Report Determining the Effects of Ethanol On Pump Station Facilities PR-186-09204

Pipeline Research Council International Arlington, Virginia

Report No./DNV Reg No.: ANEUS813GTQU (EP001681) April 23, 2010

Determ			Ctation	1				
Determining the Effects of Ethanol on Pump Station Facilities								DNV COLUMBUS, INC.
For:				-	Ma	ateri	als & Corro	sion Technology Center
								5777 Frantz Road
		ouncil International				Du	blin, OH 43	017-1386, United States
		vard, Suite 1101						Tel: (614) 761-1214 Fax: (614) 761-1633
Aring	ton, VA 222	209						http://www.dnv.com
Accour	nt Ref.:			-			http://	www.dnvcolumbus.com
110000								
Date of	f First Issue:	January 25, 201	10 Proj	ect No.			1	EP001681
Report	No.:		Orga	anization	Unit:	Μ	laterials/Cor	rosion Technology Ctr.
Revisio	on No.:	2	Subj	ject Grouj	p:			
Summa	ary:							
Prepared	d by:				Signatur	·e		
1	5		uickel, M.S.				Ar	
		Senior	Engineer	Signature			mke	
Verified	l by:				Signatur	·e	-	
		John A. Beaver	s, Ph.D., FN	IACE			$\left(\right)$	$\sim \rho$
		Director – Fa	Director – Failure Analysis				yon a	Beaners
						6	0	Beaners
Approve	ed by:	Oliver C. M	•		Signatur	е	Ω	1
		Director, Materials & Corrosion		osion	Miver C. Mozhys;			
		Technolo	ogy Center		<u> </u>			Thoghiss,
v		n without permission from t l unit (however, free distribu	1		Indexi	ing T	omme	
	DNV after 3 y				muex	ing i		
	No distribution organizational	n without permission from t l unit	he client or respo	onsible	Key Words			
	Strictly confidential			Servic Area	e			
	Unrestricted distribution			Marke Segme				
Rev. Nc	o. / Date:	Reason for Issue:	Prepared b	y:	App	rove	ed by:	Verified by
				•				
© 2009	DNV Columb	us. Inc.						
All righ	ts reserved. T	his publication or parts						l in any form or by any
means	, including pho	otocopying or recording	g, without the	prior writ	ten con	sent	of DNV Col	umbus, Inc.

Table of Contents

1.0	BAC	KGROUN	ND	
2.0	TECH	HNICAL	APPROAC	Н1
3.0	RESU	JLTS AN	D DISCUS	SION
	3.1	Non Fe	rrous Metal	s
		3.1.1	Aluminur	n/Aluminum Alloys
			3.1.1.1	Information from the Literature
			3.1.1.2	Recommendations 4
		3.1.2	Copper/ C	Copper Base Alloys 5
			3.1.2.1	Information from the Literature
			3.1.2.2	Recommendations
		3.1.3	Nickel/Ni	ckel Base Alloys6
			3.1.3.1	Information from the Literature
			3.1.3.2	Recommendations
		3.1.4	Titanium	
			3.1.4.1	Information from the Literature7
			3.1.4.2	Recommendations7
		3.1.5	Zinc	
			3.1.5.1	Information from the Literature7
			3.1.5.2	Recommendations
		3.1.6	Stainless	Steel
			3.1.6.1	Information from the Literature
			3.1.6.2	Recommendations
	3.2	Elaston	ners and Pla	stics9
		3.2.1	Viton®	
			3.2.1.1	Information from the Literature

Table of Contents (continued)

	3.2.1.2	Recommendations 10
3.2.2	Nylon	
	3.2.2.1	Information from the Literature 11
	3.2.2.2	Recommendations 11
3.2.3	PEEK	
	3.2.3.1	Information from the Literature 11
	3.2.3.2	Recommendations 11
3.2.4	Polyuretha	ne11
	3.2.4.1	Information from the Literature 12
	3.2.4.2	Recommendations 12
3.2.5	Teflon	
	3.2.5.1	Information from the Literature 12
	3.2.5.2	Recommendations 12
3.2.6	Nitrile	
	3.2.6.1	Information from the Literature 13
	3.2.6.2	Recommendations 13
SUMMARY AN	ND CONCL	LUSIONS 13
REFERENCES		

4.0

5.0

DET NORSKE VERITAS

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities PR-186-09204

Appendices

Appendix A – Industry Survey Letter

Appendix B – A Table of Pump Station Components Identified from an Industry Survey

List of Tables

Table 1.	Summary of the ceramics identified in the pump stations	7
Table 2.	Summary of the elastomers/plastics identified in the pump stations 1	8
Table 3.	Summary of the non-ferrous metals identified in the pump stations 1	9
Table 4.	Summary of the stainless steels identified in the pump stations	0
Table 5.	Summary of corrosion rates from tables ^[1, 2, 3] of nonferrous metal and stainless steels. These metals were specifically identified in pump stations	1
Table 6.	Summary of corrosion rates from tables ^[1, 2, 3] of nonferrous metals and stainless steels. These metals were not specifically identified in pump stations.	2
Table 7.	The galvanic series in seawater. ^[7]	4
Table 8.	Ethanol solutions used in immersion and electrochemical tests. ^[13]	5
Table 9.	Summary of the resistance of elastomers and plastics from tables. ^[1, 2, 3] These materials were specifically identified in pump stations	6
Table 10.	Summary of the volume change (%) data for elastomers from papers in literature, and recommendations for use in FGE. [Note; 0% ethanol is 100% gasoline (neat gasoline or simulated)]	7
Table 11.	Summary of the non-ferrous metals and stainless steel compatibility in FGE	8
Table 12.	Summary of the elastomers/plastics compatibility in FGE	8

MANAGING RISK

1.0 BACKGROUND

Ethanol has been used for the last several years as an environmentally friendly alternative to methyl tertbutyl ether (MTBE), which is an oxygenate additive to gasoline, to increase octane levels, and to facilitate the combustion process. However, the need to find alternatives to imported oil and gas has spurred the increased use of ethanol as an alternative fuel source. Further, ethanol is being promoted as a potential trade-off for CO_2 emissions from the burning of fossil fuels since CO_2 is consumed by the plants used as the ethanol source. Legislation mandates a significant increase in ethanol usage as fuel over the next twenty years. The widespread use of ethanol will require efficient and reliable transportation from diverse ethanol producers to distribution terminals. Pipelines are, by far, the most cost-effective means of transporting large quantities of liquid hydrocarbons over long distances. For transporting ethanol, both existing pipeline infrastructure and new pipeline construction are being contemplated.

In companion PRCI projects, the stress corrosion cracking (SCC) of pipeline steels and the performance of elastomer seals/gaskets are being studied. The SCC study not only includes piping grade steel, but also a cast steel that could be used in pumps. Many of the issues related to corrosion are being resolved in these projects. However, to completely address the effect of ethanol and gasoline-ethanol blends in pipeline systems, investigation of the effects of ethanol on other components, such as pumps, valves, screens, springs, and metering devices should be investigated. These components may have different materials (e.g., non-ferrous alloys), different types of loading, and different exposure conditions.

The objective of this project is to investigate ethanol - materials compatibility issues for components involved in pump station facilities. Materials investigated included non-ferrous alloys, stainless steels, and elastomers/plastics.

This project is divided into three phases; Survey of Knowledge and Gaps (Phase 1), Detailed Study to Close Gaps Identified in Phase 1 (Phase 2), and Development of Guidelines (Phase 3). This report summarizes the results of Phase 1. This phase consisted of three tasks; Industry Survey (Task 1), Literature Search (Task 2), and Report (Task 3).

2.0 TECHNICAL APPROACH

The first task of this project involved sending out an industry survey regarding materials in pump stations. This task was performed to determine what components are important from a facilities point of view and what materials are used in these components. The experiences of companies involved in PRCI/API projects, Petrobras, Kinder Morgan, and European Companies as relevant were included in this survey. The survey letter is shown in Appendix A. The following

information was requested in the survey: Component #, Component Type, Component Manufacture, Component Information, Application, Probable Material, Environment, and Experience. Examples of Applications are pump station components and loading racks in a blending facility. Examples of Environments are fuel grade ethanol (FGE), ethanol-gasoline blends, or a specific blend (e.g., E-85 [85 volume % ethanol – 15 volume % gasoline]). Examples of Component Types are pumps, valves, and metering devices. Examples of Component Information are diameters and construction materials. The information from the survey was organized into a table. Additionally, manufacturers of the components were contacted in order to determine the materials present in the components at the pump stations. The requests for bill of materials or materials for specific part numbers was performed by email and/or phone calls.

The second task involved performing a literature search. The survey focused on putting together data from the literature on the ethanol exposure effects of materials involved in various pump station components. The open literature, as well as company reports, were considered. Previous literature surveys conducted for PRCI SCC 4-1 and 4-4, and API, were utilized. The open literature search was performed using the search engines Engineering Village and Science Direct. The keywords in the search included ethanol, corrosion, failure, various non-ferrous metals, stainless steels, and elastomers/plastics.

3.0 **RESULTS AND DISCUSSION**

The table constructed from the industry survey is shown in Appendix B. The information from the survey was organized with the following headers: Component, Application, Materials, Manufacturer, Model #, and Additional Information. The table is sorted by Application and then by Component. Although it was not possible to identify all of the materials, it appears (based on the repeating of materials for different applications) that the various widely used non-ferrous metals, stainless steels, and elastomers/plastics were identified. Additionally, the material information provided is from vintage components, and some from newer components. All of the information supplied by one component manufacturer (Smith) is for newer components.

Table 1 is a summary of the ceramics identified in the pump stations. Table 2 is a summary of the elastomers/plastics identified in the pump stations. Table 3 is a summary of the non-ferrous metals identified in the pump stations. Table 4 is a summary of the stainless steels identified in the pump stations. Column 1 lists the materials, Column 2 provides a description of the materials, and Column 3 provides the application and/or component that the material is associated.

Information regarding ethanol compatibility was identified in the literature for the following elastmors/plastics: Buna N (nitrile), polyurethane, TFE (Teflon), PEEK, Viton®, and nylon. Information regarding ethanol compatibility was identified in the literature for the following non-ferous metals: 7075 Al, aluminum bronze, bronze, Ni 200, and Ni-Cr-Fe-Mo alloy. Information regarding ethanol compatibility was identified in the literature for the following stainless steels: 302SS, 303SS, 304SS, 316SS, 317SS, 17-4 PH, and 440C. Performance information for these materials in FGE, ethanol-gasoline blends and related environments is provided below.

3.1 Non Ferrous Metals

Table 5 and Table 6 list corrosion rates from tables in the literature. Table 5 is a summary of the non-ferrous metals and stainless steels <u>specifically identified</u> in the pump stations along with corrosion rate information. Table 6 is a summary of the non-ferrous metals and stainless steels identified in the literature search that <u>could be present</u> in the pump stations (along with corrosion rate information). Column 1 lists the materials and Column 2 provides a description of the corrosion rates at various temperatures and concentrations of ethanol. Because differing rates, concentrations, and temperatures are given for different references, reference numbers are listed at the end of each description.

3.1.1 Aluminum/Aluminum Alloys

Aluminum samples tested in ethanol have experienced low corrosion (less than 2 mils per year) at low temperatures and higher corrosion rates (less than 20 mils per year) at higher temperatures (~200°F).^[1, 2, 3] Aluminum alloys are reportedly compatible with E-10 (10 volume % ethanol – 90 volume % gasoline) and not compatible with E-85.^[4, 5, 6] Aluminum alloys are known to degrade in ethanol/gasoline blends containing high percentages of ethanol. Active metals, such as aluminum, have a higher probability of being galvanically attacked in E-85 than E-10. E-85 is capable of absorbing more water and contaminants, and the increased water content allows E-85 to be more conductive than E-10. Aluminum nozzles for dispensing fuel have corroded in M-85 (85 volume % methanol – 15 volume % gasoline), and although FGE may not be as aggressive as fuel grade methanol (FGM), similar corrosion of aluminum may occur in FGE. All the references (in this report, unless otherwise stated) regarding the compatibility of metals with E-85 appear to be determined based on the location of the material in the galvanic series; see Table 7 for the galvanic series. References to the compatibility of metals to E-10 are based on very few occurrences of reported failures of metals in contact with E-10 in the U.S.

3.1.1.1 Information from the Literature

Wolynec and others^[8] discussed how the automotive industry has experienced pitting and intergranular corrosion of aluminum alloy carburetors in hydrated ethanol (HEA). Note that the

MANAGING RISK

ethanol was hydrated, and FGE in the U.S. is intended to be anhydrous. Likely due to the limited use of aluminum alloys carburetors in service at the time of publication, no other information was available. However, more modern fuel injection systems may contain aluminum components.

Pathania and others^[9] observed SCC of aluminum alloys in various ethanol solutions. SCC was observed for the following combinations: 1) Al-21.5Zn, Al-8.6Mg, and Al-2.6Mg-6.3Zn in anhydrous ethanol (0.1% H₂O) and 2) Al-21.5Zn in hydrous ethanol (5% H₂O). The time for the crack initiation decreased with increasing initial stress intensity.

Proctor and others^[10,11] documented SCC of aluminum alloys (7075-T6 and T651) in ethanol with U-bend testing (T6), cantilever beam (CB) testing (T651), and double cantilever beam (DCB) testing (T651). For the U-bend testing, the samples were stressed and immediately immersed in the ethanol. In dry ethanol, pitting corrosion was observed after 210 days and cracking was observed after approximately 300+ days of U-bend testing. The presence of intergranular cracks was documented.

For the CB and DCB testing, the samples were fatigue pre-cracked. The CB samples were loaded to 60% to 90% of the critical stress intensity factor for failure in air (K_{IC}) and the DCB samples were loaded at 70% to 90% of K_{IC} . The DCB samples were tested in methanol, ethanol, isopropanol, acetone, heptane, benzene, and carbon tetrachloride. Ethanol and carbon tetrachloride were the most aggressive environments. Cracking was identified in the ethanol environment. Additionally a critical stress intensity factor for SCC growth (K_{ISCC}) for T651 (from DCB testing) in ethanol was estimated as 7 to 9 ksi \sqrt{in} , which is very low, indicating a high susceptibility to SCC.

Samples of ethanol were analyzed for the following cases: 1) before testing, 2) after 210 days of U-bend testing of T6 in ethanol and 3) after 210 days of T651 testing of unstressed in ethanol. The samples were analyzed for the presence of aluminum using aluminon as an indicator. Aluminum was not identified for Case 1 and 3 above but was identified in the ethanol after U-bend testing for 210 days (Case 2). The identification of aluminum indicated that corrosion was occurring.

For the U-bend, CB, and DCB tests, the stress corrosion cracks mainly propagated intergranularly, and the morphology of the fracture surfaces were similar to that of aluminum alloys exposed to aqueous cracking environments.

3.1.1.2 Recommendations

Aluminum alloys are not compatible with FGE. No other work is needed.

3.1.2 Copper/ Copper Base Alloys

Copper and copper base alloy (brass, bronze, copper-nickel) samples tested in ethanol have experienced low corrosion rates (less than 2 mils per year) at low temperatures and higher corrosion rates (less than 20 mils per year) at higher temperatures (60-400°F). Copper is reportedly not compatible with E-85 (supporting reasons could not be found in literature). Bronze is reportedly compatible with E-85 and E-10. Brass is reportedly compatible with E-10 but not compatible with E-85. Brass is composed mainly of Cu and Zn and there is little to no Zn in bronze (mainly Cu). As is shown below, zinc does not appear to be compatible with E-85 and this is likely why brass is not compatible with E-85.

3.1.2.1 Information from the Literature

Wolynec and others^[8] discussed how the automotive industry has experienced severe corrosion of a bronze screen in the fuel tank intake of cars using HEA. The corrosion product on the screen was black in appearance and consisted mainly of copper sulfide. Interestingly, in a fuel filter made of a bronze screen encapsulated in a zinc plated and chromated steel cage, no corrosion of the bronze screen was observed; the zinc coating was severely corroded. It is likely that the brass was cathodically protected, which is consistent with the galvanic series.

Lechner-Knoblauch and others^[12] conducted a weight loss study involving copper (99.99%), among other materials, in denatured anhydrous ethanol (<0.03% H₂O). Contaminates, such as acetic acid, sodium acetate, sodium formate, and formic acid, were introduced into the ethanol at varying amounts. The ethanol solutions were saturated with air, nitrogen, and oxygen. Weight loss measurements were recorded after 24, 48, 72, and 100 hours of soaking. No weight loss for the three materials was measured in ethanol or ethanol with 50 ppm of chlorides. The presence of contaminants and gases in the ethanol resulted in weight loss. Corrosion rates for copper in ethanol in 1.0, 0.5, 0.1, 0.005, and 0.001 mol/L of formic acid and the presence of oxygen were 2.22 mm/year (87.4 mils/year), 1.72 mm/year (67.7 mils/year), 0.58 mm/year (23 mils/year), 0.28 mm/year (11 mils/year), and 0.05 mm/year (1.9 mils/year), respectively. The weight loss of copper was greatest in the presence of formic acid in the ethanol. Overall, the corrosion rate of zinc (see below) was greater than that of copper when the contaminants were present.

Uller and others^[13] presented an electrochemical and immersion testing study. The electrochemical testing study was conducted using brass (SAE 72), among other materials. The materials were tested in Solutions 1 - 4 shown in Table 8. Overall, the corrosion resistance decreased with increasing water and contaminate (acid and sulfate) concentration. The rate of dissolution was lower in ethanol than in the other solutions. The small amount of sulfate had a significant detrimental effect on the corrosion resistance.

MANAGING RISK

The immersion testing study (78 day test) was also conducted using brass (SAE 72), among other materials. The materials were tested in Solutions 3 - 8 shown in Table 8. Corrosion occurred in brass for the solutions containing sulfuric acid in days (oxidized surface), as no corrosion was visually observed in the presence of HEA in the first days of testing. At the end of the test, the morphology of the samples in the presence of sulfuric acid consisted of generalized corrosion and pitting. The corrosion rate increased as the sulfuric acid concentration in the ethanol increased.

No information from the literature was identified regarding SCC or pitting (although severe corrosion of bronze was noted) of copper base alloys in the presence of ethanol.

3.1.2.2 Recommendations

Bronze and the higher Cu base alloys are probably compatible with FGE. Brass is probably not compatible with FGE. Additional work is needed in the following areas: SCC and pitting resistance studies.

3.1.3 Nickel/Nickel Base Alloys

In general, nickel and nickel base alloy samples tested in ethanol have experienced low corrosion rates (less than 2 mils per year) at low temperatures and higher corrosion rates (less than 20 mils per year) at higher temperatures (~60 to 200°F). Some of the higher corrosion resistant nickel base alloys (e.g., Hastelloy) experienced low corrosion rates (less than 2 mils per year) at higher temperatures (~200°F). These alloys are commonly used in high temperature environments, have a high associated cost, and are not likely to be used in pump stations.

3.1.3.1 Information from the Literature

The only information in the literature found regarding nickel compatibility was connected to plating in a report prepared for the DOE^[5]. Nickel plating of some incompatible metals (aluminum and brass) have been recommended for nozzles, fittings, and/or connectors (used in dispensing fuel ethanol).

No information from the literature was identified regarding SCC or pitting of nickel base alloys in the presence of ethanol.

3.1.3.2 Recommendations

Nickel base alloys are probably compatible with FGE. Additional work is needed in the following areas: SCC and pitting resistance studies. The fact that nickel plating is recommended, and the location of nickel in the galvanic series, would suggest that nickel base alloys could be used in FGE.

3.1.4 Titanium

Titanium samples tested in ethanol have experienced low corrosion rates (less than 2 mils per year) at low and high (~200°F) temperatures.

3.1.4.1 Information from the Literature

Jiang and others^[14] documented cracking of titanium in ethanol. Slow strain rate (SSR) testing of TC4 titanium samples was conducted in air, water free ethanol, and ethanol + 1% acetic acid; the fracture times were 46 hours, 40 hours, and 29 hours, respectively. The results of gas chromatography (GC) and infrared spectroscopy (IRS) testing of the electrolyte after the testing of TC4 titanium in the water free ethanol indicated that acetic acid was present. It is believed that the acetic acid forms from the anodic dissolution of titanium in ethanol. Thus, it appears that acetic acid can form in ethanol/titanium systems and the acetic acid can drive SCC when a stress is present. Additionally, increasing the acetic acid concentration decreases the time to fracture; note that 1% acetic acid is above the minimum levels for acetic acid in FGE.

Additionally, an earlier study showed that stress corrosion cracks can propagate from a fatigue pre-crack in the Ti-8-Al-1Mo-1V alloy exposed to ethanol. Details regarding the test conditions could not found in literature.

No information from the literature was identified regarding pitting of titanium alloys in the presence of ethanol. SCC and cracking was documented for titanium alloys in the presence of ethanol.

3.1.4.2 Recommendations

Titanium is probably not compatible with FGE. Additional work is needed in the following areas: pitting resistance studies.

3.1.5 Zinc

3.1.5.1 Information from the Literature

Regarding the weight loss study by Lechner-Knoblauch and others^[12] discussed above, corrosion rates for zinc (99.99%) in ethanol in 1.0, 0.5, 0.1, 0.005, and 0.001 mol/L of acetic acid and the presence of oxygen were 2.73 mm/year (107 mils/year), 2.73 mm/year (107 mils/year), 0.61 mm/year (24 mils/year), 0.28 mm/year (11 mils/year), and 0.02 mm/year (0.77 mils/year), respectively. As was shown in the study with copper, the weight loss of zinc was greatest with higher concentrations of acetic acid. Overall, the corrosion rate of zinc was greater than that of copper when the contaminants were present.

MANAGING RISK

Regarding the electrochemical testing study by Uller and others^[13], a study was also conducted involving Zamak (SAE 925), among other materials. Zamak is an alloy used in carburetors and contains 94% Zn. Overall, the corrosion resistance decreased with increasing water and contaminates (acid and sulfate) concentration. The small amount of sulfate had a significant detrimental effect on the corrosion. Of importance, Zamak was the least resistant to the ethanol solutions and corroded severely, even in the 99.5% ethanol solution.

Regarding the immersion testing study by Uller and others^[13], a study was also conducted using Zamak, among other materials. At the end of the test, the morphology of the Zamak samples in all solutions consisted of generalized corrosion and pitting. The corrosion rate increased as the sulfuric acid concentration in the ethanol increased.

Wolynec and others^[8] discussed an in-service investigation of a Zamak carburetor (in HEA) that experienced pitting and intergranular corrosion. Considerable amounts of sulfur containing compounds (sulfates) were identified in the corrosion deposits. The corrosion reduces the performance of the carburetor.

No information from the literature was identified regarding SCC of zinc in the presence of ethanol. Pitting and intergranular corrosion were documented for zinc in the presence of ethanol.

3.1.5.2 Recommendations

Zinc is not compatible with FGE. No other work is needed.

3.1.6 Stainless Steel

In general, stainless steel samples tested in ethanol have experienced low corrosion rates (less than 2 mils per year) at low temperatures and higher corrosion rates (less than 20 mils per year) at higher temperatures (\sim 200 to 400°F). Additionally, stainless steel alloys are reportedly compatible with E-85 and E-10.

3.1.6.1 Information from the Literature

Of the information found in literature involving stainless steel corrosion and ethanol, many dealt with aqueous ethanol with the addition of high concentrations of acids, such as HCl or H_2SO_4 . As the acid concentrations increased, the corrosion rate increased.

No information from the literature was identified regarding SCC or pitting of stainless steels in the presence of ethanol.

Recommendations

Stainless steels are probably compatible with FGE. Additional work is needed in the following areas: SCC and pitting resistance studies.

3.2 Elastomers and Plastics

Table 9 is a summary of the corrosion resistance of the elastomers/plastics identified in the pump stations. Column 1 lists the materials identified in the pump stations. Column 2 provides 1) the range of temperatures that the materials are resistant to and 2) information regarding swell and tensile strength loss (for Teflon and nylon). Table 10 is a summary of the volume change data for elastomers and plastics (discussed below) and recommendations for use in FGE. Additional compatibility information is given below.

3.2.1 Viton®

Viton® is a DuPont trade name for several fluoroelastomers that have different compositions and performance characteristics. In general, the Viton® elastomers having lower alphabetical names have poorer performance characteristics in a variety of environments. For example, Viton® A is much less resistant to swelling in gasoline than Viton[®] B. In general, Vitons as a class have been successfully used with FGE and are reportedly compatible with E-85. The corrosion resistant tables from the literature indicate that Viton® A is resistant in ethanol from 60°F to 350°F.

3.2.1.1 Information from the Literature

Abu-Isa^[15] evaluated the tensile and swell (volume change) properties in a study involving Viton® A (fluorocarbon elastomer), among other materials and alcohols. Tensile samples and volume change samples were soaked in various ethanol/simulated gasoline blends for 72 hours at room temperature. The simulated gasoline was Indolene HO-III (spiked), which was composed of 46.32% paraffin, 49.95% aromatics (40.21 toluene), and 3.73% olefins. The ethanol/simulated gasoline blends ranged from 0 to 100% ethanol. The variation in the tensile properties and volume change, from low to high ethanol concentrations, was not significant. The volume change at 0% and 100% ethanol was less than 5%. The volume change in E-85 and E-10 was <5% and 6%, respectively, with a maximum swell of 7% in E-15 (15 volume % ethanol – 85 volume % gasoline). The elongation in E-85 was less than that in E-10 and the ultimate tensile strength (UTS) in E-10 was less than in E-85, indicating better material properties in E-85.

In a follow up study by the same author,^[16] spiked and unspiked gasoline simulates (Indolene HO-III were tested. Of interest, improved volume change and tensile results were found in the

Indolene HO-III/ethanol blends. The Indolene HO-III had a lower aromatic content (30% compared to 50% in the spiked).

Work done by Micallef and others^[17] involved various fluorelastomers containing vinylidene fluoride as a monomer (FKM)s. The most common trade name for FKM is Viton®. FKM compounds were tested in E-22 and E-85, among other solutions. E-22 consisted of 22 volume % ethanol with a standard test fluid used to replicate gasoline. E-85 consisted of 85 volume % ethanol with the standard test fluid. The standard test fluid was composed of 50% toluene and 50% isooctane. Tensile samples and volume change samples were soaked in the solutions for 168 hours at 140°F. The volume change and change in UTS were greater in this study than in the work done by Abu-Isa, which is likely from the increase in temperature, differences in the gasoline stimulant, or in the compositions of the Viton® elastomers. Of importance, less volume change, UTS change, and elongation change occurred in the E-85 compared to the E-22, regardless of the elastomer compound tested. This is consistent with the findings in the study above.

In another study by Ertekin and others^[18], Viton® A, Viton® GF, and Viton ®GFLT (among other elastomers) were immersed in neat gasoline, E-20, and E-95 for 28 days at room temperature. The 20 and 95 represented the volume % of ethanol. The neat gasoline was 100% gasoline (reformulated gasoline blendstock for oxygen blending (RBOB)). The Viton® elastomers varied in monomer and fluorine content. The swelling in the E-95 and E-20 were less than 5% and 10%, respectively, for the Viton® elastomers. Of interest, Viton® A's volume change in neat gasoline was approximately 75% compared to less than 10% for the other Viton's. Testing was also undertaken to simulate fuel transitions. The Viton® samples were soaked in E-95 for 28 days, neat gasoline and not in the E-95 for 28 days. For Viton® A, large volume changes occurred in the neat gasoline and not in the E-95, and GFLT swelled less than 10% at any one time, in a test to simulate fuel transitions. The test consisted of soaking in E-20 for 28 days, neat gasoline for 28 days, and E-20 for 28 days.

3.2.1.2 Recommendations

Viton® is compatible with FGE. No other work is needed in FGE. If a Viton® elastomer is to be used in ethanol blends, then testing in ethanol blends is recommended.

3.2.2 Nylon

The corrosion resistant tables from the literature indicated that Nylon 11 and Nylon 66 are resistant in ethanol from 60°F to 210°F and Nylon 6 is resistant in ethanol from 60°F to 250°F. According to a report prepared for the DOE^[5], nylon has been successfully used with FGE.

3.2.2.1 Information from the Literature

In a study by Yeager and others^[19], nylon (among other materials) was soaked in unleaded gasoline and E-15, among other fluids. The nylon samples were soaked 1) at room temperature for 60 days, 2) at 180°F for 30 days, 3) at 250°F for 28 days, and 4) at 302°F for 7 days. Weight gain was recorded and tensile tests were performed on the samples. A 30% long fiber (Verton RF-7006) Nylon 6/6 composite and 30% standard short glass fiber (RF-1006) reinforced Nylon 6/6 were tested. Individual results for the nylon elastomer samples were not provided but all samples (except for one) had excellent to fair chemical resistance in unleaded gas. The long fiber nylon had superior tensile strength retention relative to the short fiber nylon in both unleaded gas and the ethanol blend. The tensile strength retention of the nylon composite in the ethanol blend was greater than in the methanol blends. Additionally, the reduction in retained tensile strength was greater in the ethanol blend compared to the unleaded gasoline for the Nylon 6/6 composites tested.

3.2.2.2 Recommendations

Nylon is probably compatible with FGE. Additional work is needed in the following areas: volume change testing, at the least, in FGE should be conducted.

3.2.3 PEEK

The corrosion resistant tables from the literature indicated that polyetheretherketone (PEEK) is resistant in ethanol from 60°F to 80°F. According to the manufacturers of PEEK (Victrex), there is no attack and little or no absorption when PEEK is in contact with acetic acid, ethanol, and gasoline from 73° F to 212° F^[20].

3.2.3.1 Information from the Literature

In a study by Yeager and others^[19] above, PEEK demonstrated excellent chemical resistance, temperature resistance, dimensional stability in all fluids tested, including unleaded gasoline and E-15.

3.2.3.2 Recommendations

PEEK is compatible with FGE. No other work is needed in FGE. If PEEK is to be used in ethanol blends, then testing in ethanol blends is recommended.

3.2.4 Polyurethane

Polyurethane (UA) was listed as unsatisfactory in one of the corrosion resistance tables from the literature. Polyurethane is reportedly not compatible with E-10 or E-85. According to a report prepared for the DOE^[5], UA has been known to degrade in FGE.

3.2.4.1 Information from the Literature

In a study by Abu-Isa^[15] (details regarding testing conditions are discussed above), tensile and swell properties were obtained in a study involving UA, among other materials in alcohols. The volume change at 0% and 100% ethanol was approximately 20%. Of interest is that the volume change in E-85 and E-10 was approximately 28% and 51%, respectively, with a maximum swell of 56% in E-20. The elongation in E-85 was greater than that in E-10 and the UTS of the UA in E-10 was slightly less than in E-85.

In a follow up study by the same author^[16], similar volume change and tensile results were found in the Indolene HO-III spiked/ethanol blends. Of interest, better swell and tensile results were found in the Indolene HO-III/ethanol blends.

3.2.4.2 Recommendations

Polyurethane is not compatible with FGE. No other work is needed.

3.2.5 Teflon

The corrosion resistant tables from the literature indicated that swelling and tensile strength loss of Teflon (FEP, PFA,TFE) in ethanol up to high temperatures (~400°F) is low; thus, Teflon (FEP, PFA, TFE) is resistant in ethanol at high temperatures. TFE is reportedly compatible with E-10 and E-85. According to a report prepared for the DOE, TFE has been successfully used with FGE.

3.2.5.1 Information from the Literature

In the study by Ertekin and others^[18] involving various compounds above, the volume change in the neat gasoline, E-20, E-95 was less than 1%. Testing to simulate fuel transitions showed that Teflon (TFE) swelled less than 1%, at any one time, in the various stages described above.

3.2.5.2 Recommendations

Teflon (TFE) is compatible with FGE. No other work is needed.

3.2.6 Nitrile

The corrosion resistant tables from the literature indicated that nitrile is resistant in ethanol from 60°F to 180°F. Additionally, nitrile has been successfully used with FGE and is reportedly compatible with E-85.

MANAGING RISK

Information from the Literature

In a study by Abu-Isa^[15] (details regarding testing conditions were discussed above), tensile and swell properties were obtained in a study involving nitrile, among other materials in alcohols. The volume change in E-10 and 100% ethanol was approximately 68% and 11%, with a maximum swell of 99% in E-25.

In a follow up study by the same author,^[16] similar swell and tensile results were found in the Indolene HO-III spiked/ethanol blends. Of interest, better swell and tensile results were found in the Indolene HO-III/ethanol blends. Additionally, information regarding nitrile in various ethanol concentrations was documented in this study. The volume change at 0% and 100% ethanol was approximately 35% and 5%, respectively. The volume change in 85% ethanol/Indolene HO-III (spiked) was approximately 28%.

In the study by Ertekin and others^[18] involving various compounds above, the swelling of Buna N (nitrile) in neat gasoline, E-20, and E-95 were approximately 20%, 25%, and 7%, respectively. The swelling of Low Swell Buna N in the neat gasoline and E-95, was approximately 125% and <1%, respectively. Testing to simulate fuel transitions showed that Low Swell Buna N swelled greatly (~120%) in neat gasoline, that both Buna N's had low swelling (less than 15%) in E-95, and that Buna N swelled greater than 20% in E-20. The high swelling in blends containing low percentages of ethanol and low swelling in blends containing high percentages of ethanol is consistent with the studies conducted for nitrile in standard testing fluids.

3.2.6.1 Recommendations

Nitrile is probably compatible with FGE. Volume change testing, at the least, in FGE containing the lowest possible percentage of ethanol should be conducted since significant swelling occurred in E-85.

4.0 SUMMARY AND CONCLUSIONS

The objective of this project was to investigate ethanol - materials compatibility issues for components involved in pump station facilities. The project is divided into three phases; Survey of Knowledge and Gaps (Phase 1), Detailed Study to Close Gaps Identified in Phase 1 (Phase 2), and Development of Guidelines (Phase 3). This report summarizes the results of Phase 1. This phase consisted of three Tasks, Industry Survey (Task 1), Literature Search (Task 2), and Report (Task 3).

The first task in Phase 1 of this project involved sending out an industry survey regarding materials in pump stations. This task was performed to determine what components are

MANAGING RISK

important from a facilities point of view and what materials are used in these components. The information from the survey was organized into a table that is attached as an appendix to this report. Additionally, manufacturers of the components were contacted in order to determine the materials present in the components in the pump stations. The requests for bill of materials or materials for specific part numbers were performed by email and/or phone calls.

The second task involved performing a literature search. The survey focused on data from the literature on the ethanol exposure effects of materials involved in various pump station components. The open literature, as well as company reports, were considered. Previous literature surveys conducted for PRCI SCC 4-1 and 4-4, and API, were utilized. The open literature search was performed using two search engines; Engineering Village and Science Direct. The keywords in the search included ethanol, corrosion, failure, various non-ferrous metals, stainless steels, elastomers/plastics, and ceramics.

A number of different materials were found to be present in the components in pump stations. Metals included carbon and low alloy steels, stainless steels, pure nickel and nickel alloys, bronzes, and aluminum alloys. There were a variety of stainless steels including 300 series (austenitic, high nickel), 400 series (ferritic/martensitic, low nickel) and precipitation hardened alloys. Non metallic materials included ceramics, fiberglass, Buna N and butadiene rubbers, polyurethane, Teflon, PEEK, Viton®, and nylon.

No information was found on the performance of ceramic materials in ethanol and the literature on the performance of metallic materials in ethanol is relatively limited. More information was found on elastomer compatibility in ethanol. Information on compatibility in actual FGE was generally more limited than that in other ethanolic solutions.

Table 11 summarizes the results of the Task 2 literature search on the performance of metallic materials in ethanol. In Table 11, the first column lists common nonferrous metals and stainless steels. All but zinc and titanium were confirmed to be present in pump station components. The second column is titled *Compatibility*. For this column, there are four possible categories. *Not Compatible* indicates that sufficient information was found to establish that the class of materials is not compatible. Metallic materials in this category include aluminum alloys and zinc. Aluminum has exhibited pitting and SCC in ethanol, while zinc has exhibited high rates of general corrosion, pitting, and intergranular attack in ethanol. *Probably Not Compatible* indicates that information was limited but the available information suggests that the category of materials is not compatible. Titanium is in this category because one reference indicated that it is susceptible to SCC in ethanolic solutions. *Probably Compatible* indicates that information was limited but the available information suggests that the category of materials is compatible information suggests that the category of materials is not solutions. *Probably Compatible* indicates that information was limited but the available information suggests that the category of materials is compatible information suggests that the category of materials is compatible.

stainless steels. In the case of copper base alloys, brass is probably not compatible but other

copper base alloys, which do not contain high concentrations of zinc, probably are compatible. For all of the materials in this category, additional information is needed on the SCC behavior given the limited information on this failure mode and the SCC experience with carbon steels. *Compatible* indicates that sufficient information was found to establish that the class of materials is compatible. No metallic materials were in this category.

Table 12 summarizes the results of the Task 2 literature search on the performance of elastomeric materials in ethanol. The format for this table is the same as Table 11. All available information indicates that Teflon, PEEK, and Viton® are compatible with FGE. Nylon (limited information) and Nitrile (Buna N) probably are compatible with FGE. There may be some issues with swelling in the gasoline – ethanol blends in the case of PEEK (limited information) and Nylon (limited information), some Viton® elastomers (swelling in gasoline), and Nitrile (swelling significantly in 0% ethanol to E-85). Polyurethane is not compatible.

5.0 REFERENCES

- 1. <u>Corrosion Data Survey: Metals Section</u>, Sixth Edition, NACE International, 1985.
- 2. Pruett, K. M., <u>Compass Corrosion Guide II: A Guide to Chemical Resistance of</u> <u>Metals and Engineering Plastics</u>, Compass Publications, 1983.
- 3. Schweitzer, P. A., <u>Corrosion Resistance Tables: Metals, Nonmetals, Coatings,</u> <u>Mortars, Plastics, Elastomers and Linings, and Fabrics, Fifth Edition</u>, Marcel Dekker, Inc., 2004.
- 4. English, E. W., "So What about Those E10 and E85 Fuels? A Discussion on Materials Compatibility," L.U.S.T.LINE: A Report on Federal and State Programs to Control Leaking Underground Storage Tanks, Bulletin 52, May 2006.
- 5. United States Department of Energy, <u>Guidebook for Handling, Storing, and Dispensing</u> <u>Fuel Ethanol</u>, Argonne National Laboratory.
- 6. Renewable Fuels Association Technical Committee, Industry Guidelines, Specifications, and Procedures, RFA Publication #090301, March 2009.
- 7. Jones, D. A., Principles and Prevention of Corrosion, Second Edition, Prentice Hall, 1996.
- 8. Wolynec, S. and Tanaka, D. K., "Corrosion in Ethanol Fuel Powered Cars: Problems and Remedies," Proceedings International Congress on Metallic Corrosion, National Research Council of Canada, pp. 468–474, 1984.

- 9. Pathania, R. S. and Tromans, D., "Initiation of Stress Corrosion Cracks in Aluminum Alloys," Metallurgical Transactions A, Vol. 12A, April 1981, pp. 607-612.
- Proctor, R. P. M and Paxton, H. W., "Stress Corrosion of Aluminum Alloy 7075-T651 10. in Organic Liquids," Journal of Materials, Vol. 4, No. 3, September 1969, pp. 729-760.
- Proctor, R. P. M and Paxton, H. W., "Stress Corrosion Crack Initiation in 7075-T6 11. Sheet in Organic Liquids," Journal of Materials, Vol. 5, No. 3, September 1970, pp. 602-604.
- Lechner-Knoblauch, U., and Heitz, E., "Corrosion of Zinc, Copper, and Iron in 12. Contaminated Non-Aqueous Alcohols," Vol. 32, No. 6, June 1986, pp. 901-907.
- 13. Uller, L., Bastos, S. M., Wanderley, V. G., de Miranda, T. R. V., "The Dentrimental Effects of Metal Corrosion by Some Impurities Present on Hydrated Ethanol," Proceedings - International Congress on Metallic Corrosion, National Research Council of Canada, pp. 475–482, 1984.
- 14. Jiang, Y., Wu, Y., Wang, K., "Acetic Acid - Direct Corrosive Mediator in SCC of Titanium/Ethanol System," Materials and Corrosion, Vol. 57, No. 5, 2006.
- 15. Abu-Isa, I. A., "Effects of Mixtures of Gasoline with Methanol and with Ethanol on Automotive Elastomers," SAE Preprints, n 800786, June 9 – June 13.
- Abu-Isa, I. A., "Elastomer-Gasoline Blends Interactions II. 16. Effects of Ethanol/Gasoline and Methyl-t-Butyl Ether/Gasoline Mixtures on Elastomers," Rubber Chemistry and Technology, Vol. 56, No. 1, Mar-Apr 1983, pp. 169-196.
- 17. Micallef, G. and Weimann, M. and A, "Elastomer Selection for Bio-Fuel Requires a Systems Approach," Sealing Technology, January 2009, pp.7 – 10.
- Ertekin, A. and Narasi, S., "Effects of Sequential Fuel Transitions from Ethanol Blends 18. to Neat Gasoline on the Performance of Polymeric Materials Subjected to Static Loading," to be presented at the NACE 2010 conference.
- 19. Yeager, C., Carreno, C., and Zellock, C., "The Effects of Alternate Fuels and Automotive Fluids on Engineering Thermoplastic Composites," In Search of Excellence: 49th Annual, ANTEC '91, Vol. 49th, 1991, pp. 1515-1521.
- VICTREX PEEK High Performance Polymers Chemical Resistance [Online]. 20. http://victrex.com/docs/literaturedocs/Chemical%20Resistance%20Brochure 8 09.pdf.

Table 1.	Summary of the ceramics identified in the pump stations.
1 4010 1.	Summary of the ceramics identified in the pump stations.

Material Material Description		Components and Applications in Pump Stations		
		Journal, rotor, washer, and bearing in meters (TUR). Mechanical seal and seal face in pump. Sleeve and journal bearing in meter (PT).		
Silicon Carbide	Ceramic	Mechanical seal in pump.		
Heanium	High purity aluminum oxide (ceramic)	Cyclone separator in pump.		

	MATERIAL	MATERIAL DESCRIPTION	COMPONENTS AND APPLICATIONS IN PUMP S		
Fiberglass Fine fibers of glass used as a reinforcing agent for polymers S			Sump tank.		
	Buna N (nitrile)	Copolymer of butadiene and acrylonitrile.	O'ring in meter.		
	Polyurethane	Can be categorized as a polymer or elastomer.	Sphere in prover.		
TFE (Teflon) A synthetic fluoropolymer of tetrafluoroethylene,		A synthetic fluoropolymer of tetrafluoroethylene,	Body seal and stem packing in ball valve.		
	Polyether ether ketone (PEEK)A high performance thermoplastic generally used with fiber reinforcements such as glass, carbon, or Kevlar.		Retainer for bearing in meter. Wear ring/bushing in pump (centrigal). Casing ring.		
	Viton® An FKM fluoroelastomer. There are various grades of Viton®.		Diaphragm in flow control valve. Seat for flow check and o'ring for PD meter in truck loading terminal. separator in pump. O'ring in check valve, differential pressure switch, drain valve, gate valve, pressur pump. Seal in M/L pump. Mechanical seal. Mainline pump seal in pump.		
	Viton® B A specific grade of Viton®.		Mechanical seal and seal in pump.		
	Nylon Generic designation for a family of synthetic polymers known generically as polyamides		O'ring in surge relief flow valve.		
	Armstrong TN 9004A heavy-duty, high density material with fully cured nitrile butadiene rubber binder.		Casing gasket in pump bearing housing. Flange gasket in mainline pump.		

Table 2.

Summary of the elastomers/plastics identified in the pump stations.

MANAGING RISK

TATIONS
al. Valve stem seal packing in valve stem seal. Cyclone sure switch, pressure transmitter, relief valve, and sump

MATERIAL	MATERIAL DESCRIPTION	COMPONENTS A	
7075 AI An Al-Zn-Mg-Cu precipitation hardenable alloy (where the primary alloying agent is Zn. The 7xxx serie strongest aluminum alloys.		Rotor hub in meter (PT).	
Aluminum bronze	Type of bronze which aluminum (2 to 15%) is the main alloying metal added to copper.	Impeller in pump.	
Bronze	A metal alloy consisting primarily of copper, usually with tin as the main additive, but sometimes with other elements such as phosphorus, manganese, aluminum, or silicon.	Case/impeller wear ring and	
Bronze B584-903, 932, 936, 905, 958	903 and 905 are tin bronzes, 932 and 936 are high lead bronzes, and 958 is an aluminum bronze.	Case and impeller ring, thro	
Ni 200	99% pure nickel alloy.	Rotor blade in meter (PT).	
Hi mu 80	Information found for HyMu 80 alloy: 80% nickel-iron-molybdenum alloy.	Rim button in meter (PT).	

Summary of the non-ferrous metals identified in the pump stations. Table 3.

MANAGING RISK

ITS AND APPLICATIONS IN PUMP STATIONS

and impeller in pump. Impeller for pump in loading rack.

, throat and throttle bushing, and impeller in pump.

MATERIAL	MATERIAL DESCRIPTION	COMPONENTS AND APPLICATIONS IN PUMP STATIONS
CA6NM	A hardenable Fe-Cr-Ni-Mo alloy (cast stainless steel).	Case/impeller wear ring and impeller in pump. Impeller in pump rotating element. Impeller.
302SS	Chromium nickel austenitic stainless steel.	Nut, spring, and washer in flow control valve. Spring for gland in meter. Pin for stator in meter (TUR). Ring in meter mechanism in meter.
303SS	Chromium nickel austenitic stainless steel designed for improved machinability.	Stem in flow control valve. Gland in meter. Pin for shaft in meter. Shaft in meter. Pin for mechanism in meter.
304SS	Chromium nickel austenitic stainless steel with lower carbon content than 302SS.	Bearing, seat, and washer in flow control valve. Housing in meter. Nut in meter. Pin, clamp, lug, and spacer for m shaft in meter (PT).
316SS	Chromium nickel austenitic stainless steel with 2 to 3 % molybdenum for increased resistance to pitting/crevice corrosion than 304SS.	Cone, stator, shaft, pin, screw, housing, key, flange, rotor hub, and shaft in meters (TUR). Rim, blade, and hub for mechanism in meter. Case/impeller wear rings, diffuser, seal sleeve, shaft, pipe, elbow, nipple, and orifice plate in and washer in pump mechanical seal. Connector and cooling tube in pump radial. Casing wear rings, impeller we element. Seat trim is surge relief flow valve. Casing ring. Impeller ring. Throttle bushing. Throat bushing.
317SS	Chromium nickel austenitic stainless steel with increased chromium, nickel, and molybdenum compared to 316SS.	Stud in pump.
18-8	3xx series stainless steels having approximately 18% chromium and 8% nickel.	Screw and nut in meter (TUR). Screw for stator in meter. Shaft in meter. Shim in pump baseplate and coupling.
17-7 PH	A chromium-nickel-aluminum precipitation hardening stainless steel used for applications requiring high strength and a moderate level of corrosion resistance	Spring in flow control valve. Spring for mechanism in meter.
416	A martensitic free-machining stainless steel which can be hardened by heat treatment to higher strength and hardness levels.	Screw and shaft for mechanism in meter. Shaft in pump.
420	Hardenable, straight-chromium stainless steel which combines superior wear resistance with excellent corrosion resistance.	Rotor in meter (TUR). Rotor hub in meter (PT). Casing ring. Impeller ring. Throttle bushing. Throat bushing. Th
430F	A low carbon ferritic stainless steel that contains additionally molybdenum compared to 430.	Screw for rotor in meter (TUR).
440C	A martensitic stainless steel hardenable to high hardness levels for wear resistance applications and corrosion resistance above carbon steel.	Bearing and plate in meter. Pin, bearing, dowel, and roller for mechanism in meter.
630/17-4 PH	630 is also known as 17-4 PH, a martensitic stainless steel that is capable of precipitation hardening. It has very high strength and hardness.	Gear and dowel for mechanism in meter. Shaft for cover in meter. Retainer in surge relief flow valve. Rotor shaft

Summary of the stainless steels identified in the pump stations. Table 4.

MANAGING RISK

1	0	Ν	S	

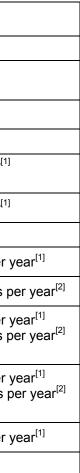
in meter (TUR). Clamp, lug, spacer, and washer for

for mechanism in meter. Cone, flange, rotor hub, and

ub for rotor in meters (TUR). Lug, spacer, and screw for late in pump. Square key in pump kit shaft pump. Stud ler wear ring, set screw, and split ring in pump rotating Throttle sleeve. Throat sleeve. Mechanical seal.

ling. Spring in surge relief flow valve.

. Throttle sleeve. Throat sleeve.


shaft for PD meter in truck loading terminal.

CORROSION RATES FROM TABLES IN LITERATURE
Copper Base Alloys
 average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year^[1] corrosion rate from 60°F to 400°F in ethanol is less than 20 mils per year^[3]
– the corrosion rate in ethanol from 60°F to 70°F is less than 20 mils per year ^[3]
Nickel Base Alloys
 the average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year^[1] the corrosion rate in ethanol from 60°F to 200°F is less than 20 mils per year^[3]
- the average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1]
Stainless Steels
- the average corrosion in ethanol from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per ye
- the corrosion rate in ethanol, at any temperature up to 212°F in any concentration to 100% is less than 20 mils pe
 the average corrosion in ethanol from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year the corrosion rate in ethanol, at any temperature up to 212°F in any concentration to 100% is less than 20 mils per the corrosion rate in ethanol from 60°F to 200°F is less than 20 mils per year^[3]
 the average corrosion in ethanol from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year the corrosion rate of ethanol, at any temperature up to 200°F in any concentration to 100% is less than 20 mils per the corrosion rate in ethanol from 60°F to 400°F is less than 20 mils per year^[3]
- the average corrosion in ethanol from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per ye
– the corrosion rate in ethanol from 60°F to 170°F is less than 20 mils per year ^[3]

Summary of corrosion rates from tables^[1, 2, 3] of nonferrous metal and stainless steels. These metals were specifically identified in pump stations. Table 5.

MANAGING RISK

MATERIAL	CORROSION RATES FROM TABLES IN LITERATURE
	Aluminum/Aluminum Alloys
Aluminum	- the average corrosion rate in aluminum, at 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1] - the corrosion rate in ethanol is less than 2 mils per year from 60°F to 180°F and less than 20 mils per year from 180°F to 210°F ^[3]
AI3003	- the corrosion rate in ethanol, at any temperature up to 200°F in 100% concentration, or saturated, or concentrated solution is less than 20 mils per year ^[2]
	Copper/Copper Base Alloys
Copper	 average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year^[1] the corrosion rate in ethanol, up to 70°F in 100% concentration, or saturated, or concentrated solution is less than 20 mils per year^[2] the corrosion rate in ethanol from 60°F to 100°F is less than 20 mils per year^[3]
70Cu-30Ni	- average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1] - the corrosion rate in ethanol, up to 70°F in 100% concentration, or saturated, or concentrated solution is less than 20 mils per year ^[2]
90Cu-10Ni	- average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1] - the corrosion rate in ethanol, up to 70°F in 100% concentration, or saturated, or concentrated solution is less than 20 mils per year ^[2]
Admiralty Brass	- the corrosion rate in ethanol, up to 70°F in 100% concentration, or saturated, or concentrated solution is less than 20 mils per year ^[2]
Naval Bronze	- corrosion rate in ethanol up to 70°F in 100% concentration, or saturated, or concentrated solution is less than 2 mils per year ^{12]}
Silicon Bronze	- the corrosion rate in ethanol, up to 70°F in 100% concentration, or saturated, or concentrated solution is less than 20 mils per year ^[2] - the corrosion rate in ethanol from 60°F to 70°F is less than 20 mils per year ^[3]
Yellow Brass	- corrosion rate in ethanol up to 70°F in 100% concentration, or saturated, or concentrated solution is less than 2 mils per year ^[2]
Brass	- average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1] - the corrosion rate in ethanol from 60°F to 210°F is less than 20 mils per year ^[3]
	Nickel/Nickel Base Alloys
Nickel	- the corrosion rate in ethanol, at any temperature up to boiling in any concentration to 100% is less than 20 mils per year, and in some instances, is less than 2 r
Ni201	- the corrosion rate in ethanol from 60°F to 200°F is less than 20 mils per year ^[3]
Monel 400 (66Ni-32Cu)	 average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year^[1] the corrosion rate in ethanol, at any temperature up to 200°F in any concentration to 100% is less than 2 mils per year^[2] the corrosion rate in ethanol from 60°F to 210°F is less than 20 mils per year^[3]
Inconel 600 (76Ni-16Cr-7Fe)	 - average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year^[1] - the corrosion rate from 60°F to 80°F is less than 20 mils per year^[3]
Inconel	- the corrosion rate in ethanol, at any temperature up to boiling in any concentration to 100% is less than 20 mils per year, and in some instances, is less than 2 r
Inconel 625	- the corrosion rate from 60°F to 80°F is less than 20 mils per year ^[3]
Incoloy 825	- average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1] -the corrosion rate in ethanol at 167°F, between concentrations of 42% to 56%, from 70°F to 221°F, at a concentration of 45%, and from 70°F to 105°F, between year ^[2]
Hastelloy G/G3	- average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1]
Hastelloy B	 average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year^[1] the corrosion rate in ethanol, at any temperature up to 200°F in any concentration to 100% is less than 2 mils per year^[2] the corrosion rate from 60°F to 200°F is less than 2 mils per year^[3]
Hastelloy B2	- average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1] - the corrosion rate from 60°F to 200°F is less than 2 mils per year ^[3]
Hastelloy C	 average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year^[1] the corrosion rate in ethanol, at any temperature up to 200°F in any concentration to 100% is less than 2 mils per year^[2] the corrosion rate from 60°F to 210°F is less than 2 mils per year
Hastelloy C-276	 - average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year^[1] - the corrosion rate from 60°F to 210°F is less than 2 mils per year^[3]
Hastelloy D	- the corrosion rate in ethanol from 60°F to 210°F is less than 20 mils per year ^[3]
Alloy 20	- average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1]

MANAGING RISK

entified in pump stations.

121
mils per year ^[2]
20
mils per year ^[2]
n concentrations of 0% to 20% is less than 2 mils per

MATERIAL	CORROSION RATES FROM TABLES IN LITERATURE
CN 20	- average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1]
	Stainless Steels
Type 405, 17Cr, 26Cr-1Mo, 321, 904L	- the average corrosion in ethanol from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1]
20 Cb-3	 average corrosion rate from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year^[1] the corrosion rate in ethanol, at any temperature up to 200°F in any concentration to 100% is less than 2 mils per year^[2] the corrosion rate in ethanol from 60°F to 210°F is less than 20 mils per year^[3]
Туре 410	- the average corrosion in ethanol from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1] - the corrosion rate in ethanol from 60°F to 210°F is less than 20 mils per year ^[3]
Туре 347	- the average corrosion in ethanol from 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1] - the corrosion rate in ethanol from 60°F to 200°F is less than 20 mils per year ^[3]
Type 430F	- the corrosion rate in ethanol, from 70°F to 212°F, at 100% concentration is less than 20 mils per year ^[2]
	Titanium
Titanium	- the average corrosion rate of ethanol, at 0 to 200°F in low to high concentrations of ethanol is less than 2 mils per year ^[1] - the corrosion rate of titanium in ethanol from 60°F to 210°F is less than 2 mils per year ^[3]

MANAGING RISK

Table 7.

MANAGING RISK

Cathodic (noble) 1 platinum gold graphite titanium silver zirconium Type 316, 317 SS (passive) Type 304 SS (passive) Type 430 SS (passive) nickel passive copper-nickel (70-30) bronzes copper brasses nickel (active) naval brass tin lead Type 316, 317 SS (active) Type 304 SS (active) cast iron steel or iron aluminum alloy 2024 cadmium aluminum alloy 1100 zinc magnesium and magnesium alloys 1 Anodic (active)

The galvanic series in seawater.^[7]

Solution №	Ethanol Solutions	Alcohol Grade (° INPM)	Acidity (mg/100ml)
1	Ethanol	99.5	0.23
2	Hydrated ethanol (HEA)	92.7	0.60
3	HEA + acetic acid	92.7	1.67
4	HEA + acetic acid + H_2SO_4 (2 ppm SO_4)	92.7	1.86
5	HEA + acetic acid + H_2SO_4 (4 ppm SO_4)	92.7	2.08
6	HEA + acetic acid + H_2SO_4 (6 ppm SO_4)	92.7	2.28
7	HEA + acetic acid+ ethyl aldehyde (10mg/100mL)	92.7	1.67
8	HEA + acetic acid+ ethyl acetate (10mg/100mL)	92.7	1.67

Table 8. Ethanol solutions used in immersion and electrochemical tests.^[13]

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

Summary of the resistance of elastomers and plastics from tables.^[1, 2, 3] These materials were specifically identified in pump stations. Table 9.

MATERIAL	CORROSION RESISTANCE FROM TABLES IN LITERATURE				
	Elastomers and Plastics				
(Viton® A)	- is resistant in ethanol from 60°F to 350°F; Viton® (grade not identified) and Viton® B identified in pump stations				
Nylon	 - the swelling and tensile strength loss percentages of polyamide nylon in ethanol at any temperature up to 200°F at 100% concentration, or concentrated, or saturated s less than 15% to 50%, respectively; varying or variable rates were reported by multiple sources^[2]. - Nylon 11 and 66 are resistant in ethanol from 60°F to 210°. Nylon 6 is resistant in ethanol from 60°F to 250°F ^[3] 				
PEEK	- is resistant in ethanol from 60°F to 80°F ^[3]				
Teflon	 - the swelling and tensile strength loss percentages of Teflon (FEP, PFA,TFE) in ethanol at any temperature up to 392°F in any concentration to 100% are less than 10% attack^[2]. - FEP is resistant in ethanol from 60°F to 400°F^[3] - PFA is resistant in ethanol from 60°F to 390°F^[3] - TFE is resistant in ethanol from 60°F to 470°F^[3] 				
Polyurethane	- is unsatisfactory ^[3]				
Nitrile	- is resistance in ethanol from 60°F to 180°F ^[3]				

MANAGING RISK

d solution are less than 10% to greater than 20% and

0% and 15%, respectively, with little or no chemical

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

Ethanol %	Viton® A ^[15] *	Viton® A, GF, and GFLT ^[18] **	UA ^[15] *	TFE ^[18] **	Nitrile (Buna N) ^[15] *	Buna N ^[18] **	Low Swell Buna N ^[18] **	Nylon	PEEK
				V	OLUME CHANGE				
0	<5	75 (Viton® A), <10 (Viton® GF) and (Viton® GFLT)	20	<1	58	20	125	_	_
10	6	-	51	-	68	-	-	-	-
20	-	<10	_	<1	-	25	-	-	-
85	6	-	28	_	28	-	-	-	-
95	-	<5	-	<1	-	7	<1	-	-
100	<5	-	20	_	5	-	-	-	-
				RE	COMMENDATIONS				
Comments	Viton® is compatible w work is needed in FGE Viton® to be used in b concentrations of ethar	. The choice of which lends containing low	Polyurethane Is not compatible with FGE. No other work is needed. The volume change was too high if the material is intended for sealing, even in FGE.	Teflon (TFE) compatible with FGE. No other work is needed. Teflon appears to be compatible with various ethanol blends.	Nitrile is probably comp testing, at the least, in I percentage of ethanol s swelling occurred in E- concentrations less tha The choice of which nit concentrations of ethar	FGE containing the low should be conducted sin 85 .Contact with ethan n 95 or 90% may cause rile to be used in blend	est possible nce significant ol e sealing issues.	Nylon is probably compatible with FGE. Additional work is needed in the following areas: volume change testing, at the least, in FGE should be conducted. According to a report prepared for the DOE, nylon has been successfully used with FGE.	PEEK is compatible with FGE. No other work is needed in FGE. If PEEK is to be used in ethanol blends, then testing in ethanol blends is recommended. PEEK demonstrated excellent results in various fluids (including M-85 fuel), and excellent resistance to gasoline and ethanol.

Table 10. Summary of the volume change (%) data for elastomers from papers in literature, and recommendations for use in FGE. [Note; 0% ethanol is 100% gasoline (neat gasoline or simulated)].

* Simulated gasoline

** RBOB (reformulated gasoline blendstock for oxygen blending)

MATERIALS	COMPATIBILITY	COMMENTS
Aluminum Alloys	Not compatible.	Pitting and SCC in ethanol.
Zinc	Not compatible.	Pitting and IG cracking documented in HEA. Severe corrosion in ethanol.
Titanium	Probably not compatible.	SCC documented in ethanol.
Copper Base Alloys	Bronze and the higher Cu base alloys are probably compatible. Brass is probably not compatible.	Severe corrosion of brass in HEA. Additional work is needed in SCC and pitting resistance.
Nickel Base Alloys	Probably compatible.	Nickel plating recommended for use in FGE. Additional work is needed in SCC and pitting resistance.
Stainless Steels	Probably compatible.	Stainless steels recommended for dispensing FGE. Additional work is needed in SCC and pitting resistance.

Table 11. Summary of the non-ferrous metals and stainless steel compatibility in FGE.

Table 12.	Cummon	of the electomers	nlastics on	maatibility in ECE
Table 12.	Summary	of the elastomers/	plastics col	mpatibility in FGE.

MATERIALS	COMPATIBILITY	COMMENTS
Polyurethane	Not compatible	Known to degrade in FGE. High volume change in ethanol.
Nitrile (Buna N)	Probably compatible	Minimal volume change in FGE.*
Nylon	Probably compatible	Successfully used in FGE.*
Teflon	Compatible	Minimal volume change in ethanol.
PEEK	Compatible	Excellent resistance to ethanol and M-85.*
Viton®	Compatible	Minimal volume change in FGE.*

* Testing in ethanol/gasoline blends is recommended.

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities PR-186-09204

MANAGING RISK

APPENDIX A

INDUSTRY SURVEY LETTER

May 21, 2009

DNV COLUMBUS, INC. Materials and Corrosion Technology Center

> 5777 Frantz Road Dublin, OH 43017-1386

Tel: (614) 761-1214 Fax: (614) 761-1633 www.dnv.com www.dnvcolumbus.com

Re: Determining the Effects of Ethanol on Pump Station Facilities (EP001681)

Dear PRCI Member:

DNV Columbus was recently awarded the above referenced PRCI project. The objective of the project is to investigate ethanol – materials compatibility issues for components in pump stations and other facilities in which ethanol is handled. There are several tasks in the project and one task consists of an industry survey. This survey is being performed to determine what components are important from a facilities point of view and what materials (that will be in contact with ethanol or ethanol-gasoline blends) are present in these components.

Please take a few moments to fill out the attached tables if you are contemplating getting involved with ethanol transportation or blending and or have experience with transporting or handling ethanol or ethanol blends. You can print out the tables, fill them out in ink and fax them to me at the fax number listed below, or enter the information in the word document and return by e-mail at the e-mail address listed below. If you send the response electronically, please rename the file to avoid confusion. The results of the survey will be provided to all participants with the responders name and company affiliations removed.

Thank you in advance for your input and support on this project. If you have any questions or comments, please contact me at; (direct) 614-761-6909, (cell) 614-570-4607, (fax) 614-761-1633, or e-mail John.Beavers@dnv.com.

Sincerely,

for DNV Columbus, Inc. (formerly CC Technologies)

sh a Beaners

John A. Beavers, Ph.D., FNACE Chief Scientist Materials and Corrosion Technology Center DNV Columbus, Inc. (formerly CC Technologies)

May 21, 2009 EP001681 Page 2 of 3

Table A-1. Wetted components in pump stations and other pipeline facilities.

Component No. ^a	Component Type ^b	Component Manufacturer	Component Model No.	Component Information ^c
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

a. Where you have more than one manufacturer of the same component type, enter in individual rows.

b. Pump, valve, metering device, etc.

c. Diameter, construction material, etc.

May 21, 2009 EP001681 Page 2 of 3

Table A-2.	$\mathbf{\Gamma}_{}$	1	stations and other pipeline facilities.
Laple A-Z	Experience with welle	a components in plimp	stations and other pipeline facilities
	1	1 1 1	1 1

Component No. (from Table 1)	Application ^a	Probable Material	Environment ^b	Evnoriance
(from Table 1)	Application	Material	Environment	Experience
L	l	l	l	

a. Pump station component, loading rack in blending facility, etc.

b. FGE, ethanol-gasoline blends, a specific blend (e.g., E-85), etc.

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities PR-186-09204

MANAGING RISK

APPENDIX B

A TABLE OF PUMP STATION COMPONENTS IDENTIFIED FROM AN INDUSTRY SURVEY

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

COMPONENT	APPLICATION	MATERIALS	MANUFACTURER	
Ball	Ball Valve	A108-CS chrome plated	Apollo	73
Body	Ball Valve	A105	Apollo	7
Body Seal	Ball Valve	RPTFE	Apollo	73
Gland Nut	Ball Valve	A108-CS	Apollo	7:
Stem Packing	Ball Valve	MPTFE	Apollo	7:
Rack Control Valve	Ethanol blending system		Smith	2
Rack Meter	Ethanol blending system			
Ethanol Control Valve	Ethanol line for loading rack	Steel	Bray	S
Bearing	Flow Control Valve	Ms3002201 - Astm A 479 Type 304 Cold Finished	Smith	5
Body	Flow Control Valve	Ms1008003 - Asme Sa216 Grade Wcb, .25% Max. Carbon	Smith	5:
Cover	Flow Control Valve	Ms1008001 - Asme Sa216 Grade Wcb	Smith	5
Diaphragm	Flow Control Valve	Ms7001601 - Viton ${ m I\!R}$ Diaphragm Material, Compound Number Vx-0303	Smith	5
Diaphragm	Flow Control Valve	Ms7001601 - Viton ${ m I\!R}$ Diaphragm Material, Compound Number Vx-0303	Smith	5
Nut	Flow Control Valve	Low Carbon Steel	Smith	0
Nut	Flow Control Valve	302 Stainless Steel	Smith	6,
O-Ring	Flow Control Valve	Ms7000601 - Astm D2000 M6Hk810 A1-10 B38 Ef31 E078 E088 Z1 Z1= 75 +/- 5	Smith	6,
O-Ring	Flow Control Valve	Ms7000601 - Astm D2000 M6Hk810 A1-10 B38 Ef31 E078 E088 Z1 Z1= 75 +/- 5	Smith	64
O-Ring	Flow Control Valve	Ms7000601 - Astm D2000 M6Hk810 A1-10 B38 Ef31 E078 E088 Z1 Z1= 75 +/- 5	Smith	6,
Plate	Flow Control Valve	Ms4004801 - Sae J 463 Sep81 Uns C26000 Cold Rolled	Smith	5
Plate	Flow Control Valve	Ms1000101 - Sae J403 May92 Aisi 1010 Cold Rolled	Smith	5:
Plug	Flow Control Valve	Ms1007504 - Astm A 105	Smith	0
Plug	Flow Control Valve	Steel, High Grade Alloy Astm-A105 M-87A	Smith	6
Retainer	Flow Control Valve	Ms1007602 - Astm A 536-84 Gr. 60-40-18	Smith	5
Screw D	Flow Control Valve	Steel, Zinc Plate	Smith	6
Seat	Flow Control Valve	Ms3004701 - Astm A 351 Grade Cf8 (Type 304)	Smith	5
Spacer	Flow Control Valve	Ms1002801 - Astm A 519-90 Grade 1015-1020 Cold Finished	Smith	5
Spring	Flow Control Valve	Ms3006701 - Sae J 217 Dec88 17-7 Ph Stainless Steel	Smith	5
Spring	Flow Control Valve	Ms3005601 - Sae J 230 Dec88 302 Stainless Steel	Smith	5
Stem	Flow Control Valve	Ms3000301 - Sae J 405 Jan89 Aisi Type 303	Smith	5
Stud De	Flow Control Valve	Ms1008901 - Asme Sa193 Grade B7	Smith	64
Washer	Flow Control Valve	Ms1007602 - Astm A 536-84 Gr. 60-40-18	Smith	5
Washer	Flow Control Valve	Ms3000404 - Sae J405 Jan89 Aisi Type 304 Cold Rolled Annealed	Smith	5
Washer	Flow Control Valve	302 Stainless Steel	Smith	64
Controller	Instrumentation		Scully	S
Densitometer	Instrumentation		Solartron	78 15
Differential Pressure Gauge	Instrumentation		Orange Research	30
Flow Switch	Instrumentation		Flowtec	V
Flow Switch	Instrumentation		Fluid Components	FI 1/
Haze Tracker	Instrumentation		APII	Н
Level Switch	Instrumentation		Magnetrol	В
Level Switch	Instrumentation		Magnetrol	В
Oil-on-Water Detector	Instrumentation		InterOcean Systems, Inc.	. S
Optical Interface Detector	Instrumentation		Optical Solutions	42
Pig-Sig	Instrumentation		T.D. Williamson	04
Pressure Gauge	Instrumentation		Perma-Cal	11

ANEUS813GTQU EP001681 Date: April 23, 2010

MODEL №	ADDITIONAL INFO
73-108-04	2" carbon steel
73-108-05	2" carbon steel
73-108-03	2" carbon steel
73-108-01	2" carbon steel
73-108-02	2" carbon steel
210 Valve	
	Turbine Meter
Series 92/93	
529531001	4" 150 CS
528666001	4" 150 CS
528760001	4" 150 CS
507399002	4" 150 CS
507571003	4" 150 CS
002752400	4" 150 CS
643756402	4" 150 CS
640798416	4" 150 CS
640798434	4" 150 CS
641276405	4" 150 CS
508553001	4" 150 CS
528659001	4" 150 CS
006505002	4" 150 CS
644522401	4" 150 CS
507705004	4" 150 CS
640813001	4" 150 CS
528406002	4" 150 CS
524198004	4" 150 CS
525351003	4" 150 CS
529464001	4" 150 CS
528658001	4" 150 CS
642362407	4" 150 CS
508038003	4" 150 CS
528660007	4" 150 CS
643164406	4" 150 CS
ST-15-115-E(Part #07748)	Controller for Component No. 19
7828ADACAALDBAA 1516DG-1C-4.5B-0- 30psid, 1, 6 (20-30)	Insertion Type
V6EPB-S-S-2-S FLT93S- 1A1A104C1B00000	
HT2	
B15-1E2E-HMN	For tanks without floating roof.
B15-1EE2L-HMN	Lead displacer for floating roof.
SS 200 ADS	Slick Sleuth
42015FV-F20T-DSXH-5-N	
04-7778-2013-51	Pig detector for 6" or larger pipe.
111NIB07A23	

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

COMPONENT	APPLICATION	MATERIALS	MANUFACTURER	ł
Pressure Transmitter	Instrumentation		Rosemount	
Probe	Instrumentation		Scully	!
Rapid Flasher	Instrumentation		APII	ſ
RTD, 100 ohm Pt, for Temperature Transmitter	Instrumentation		Rosemount	1
Sampler, 12-can	Instrumentation		APII	I
Sampler, 2-can	Instrumentation		APII	I
Tank Level Transmitter	Instrumentation		Ohmart Vega	ł
Temperature Transmitter	Instrumentation		Rosemount	;
Cone	Meter (TUR) Guardsmen	Ms3002401 - Stainless Steel Astm A 479 Type 316 Cold Finished	Smith	1
Cone	Meter (TUR) Guardsmen	Ms3002401 - Stainless Steel Astm A 479 Type 316 Cold Finished 544553224 (Pipe) - Ms3002004 - Stainless Steel Astm A 312 Grade Tp304 Seamless	Smith	!
Housing (150#)	Meter (TUR) Guardsmen	641921409 (Flange) - Ms3006601 - Stainless Steel Astm A 182 Grade F 304 544553224 (Pipe) - Ms3002004 - Stainless Steel Astm A 312 Grade Tp304 Seamless	Smith	į
Housing (300#)	Meter (TUR) Guardsmen	641613403 (Flange) - Ms3006601 - Stainless Steel Astm A 182 Grade F 304 544553224 (Pipe) - Ms3002004 - Stainless Steel Astm A 312 Grade Tp304 Seamless	Smith	!
Housing (600#)	Meter (TUR) Guardsmen	003770403 (Flange) - Ms1013102 - Carbon Steel Asme Sa-105 Or Astm A-105	Smith	ļ
Journal	Meter (TUR) Guardsmen	Ms1007901 - Tungsten Carbide	Smith	ļ
Nut	Meter (TUR) Guardsmen	Astm A-194 Gr. 8A 304 Stainless Steel	Smith	(
Ring	Meter (TUR) Guardsmen	302 Stainless Steel 540293203 (Rotor) - Ms3017600 - Stainless Steel Astm A 176 Type 420	Smith	6
Rotor	Meter (TUR) Guardsmen	540296201 (Bearing) - Ms1007901 - Tungsten Carbide	Smith	ļ
Screw C Stator	Meter (TUR) Guardsmen Meter (TUR) Guardsmen	Ms3011901 - 300 Series Stainless Steel (18-8 Ss) 543341203 (Shaft) - Ms3002401 - Stainless Steel Astm A 479 Type 316 Cold Finished 543958201 (Stator) - Ms3004103 - Stainless Steel Astm A 743 Grade Cf-8M (Type 316) 644417402 (Pin) - 302 Stainless Steel 644541401 (Pin) - 316 Stainless Steel 645416401 (Screw) - 316 Stainless Steel 646630401 (Screw) - Ms3011901 - 300 Series Stainless Steel (18-8 Ss)	Smith	,
Washer	Meter (TUR) Guardsmen	Ms1007901 - Tungsten Carbide	Smith	,
Bearing	Meter (TUR) Sentry	Ms1007901 - Tungsten Carbide	Smith	į.
Bearing	Meter (TUR) Sentry	Ms1007901 - Tungsten Carbide	Smith	,
Cone	Meter (TUR) Sentry	Ms3004103 - Stainless Steel Astm A 743 Grade Cf-8M (Type 316)	Smith	,
Cone	Meter (TUR) Sentry	Ms3004103 - Stainless Steel Astm A 743 Grade Cf-8M (Type 316) 544506201 (Tube) - Ms3004202 - Stainless Steel Asme Sa-351 Cf8M (Type 316)	Smith	!
Housing (150#)	Meter (TUR) Sentry	645053416 (Flange) - Ms1013102 - Carbon Steel Asme Sa-105 Or Astm A-105 544506211 (Tube) - 544506201 (Tube) - Ms3004202 - Stainless Steel Asme Sa-351 Cf8M (Type 316)	Smith	;
Housing (300#)	Meter (TUR) Sentry	645170406 (Flange) - Ms1013001 - Carbon Steel Astm A 350 Grade Lf2 Class 1 544506221 (Tube) - Ms3004202 - Stainless Steel Asme Sa-351 Cf8M (Type 316)	Smith	ŧ
Housing (600#)	Meter (TUR) Sentry	645814406 (Flange) - Ms3011601 - Stainless Steel Astm A 182 Grade F 316	Smith	ţ
Кеу	Meter (TUR) Sentry	645473401 - No. 807, 316 Stainless Steel	Smith	ļ
Nut	Meter (TUR) Sentry	Ms3009901 - 300 Series Stainless Steel (18-8 Ss)	Smith	1
Pin	Meter (TUR) Sentry	Astm A-479 Type 316 Stainless Steel	Smith	(
Ring	Meter (TUR) Sentry	Ms3007301 - Stainless Steel Castings Astm A 743 Grade Cf-8M (Type 316) 541455212 (Bearing) - Ms1007901 - Tungsten Carbide 542238200 (Screw) - Ms3001701 - Stainless Steel Sae J 405 Jan89 Aisi Type 430F 543093212 (Rim) - Ms3007301 - Stainless Steel Astm A 743 Grade Cf-8M (Type 316) 544425201 (Blade) - Ms3001501 - Stainless Steel Astm A 240 Type 316	Smith	ţ
Rotor	Meter (TUR) Sentry	544435201 (Hub) - Ms3002401 - Stainless Steel Astm A 479 Type 316 Cold Finished	Smith	!
Screw	Meter (TUR) Sentry	Ms3009901 - 300 Series Stainless Steel (18-8 Ss)	Smith	
Shaft	Meter (TUR) Sentry	Ms3002401 - Stainless Steel Astm A 479 Type 316 Cold Finished	Smith	ļ
Washer	Meter (TUR) Sentry	Ms1007901 - Tungsten Carbide	Smith	ļ
Ethanol Meter	Meter for loading rack		Titan Industries	:

ANEUS813GTQU EP001681 Date: April 23, 2010

MODEL № 3051CG5A52A1AB4E5M5	ADDITIONAL INFO
SP-MU (Part #07996)	
FR2	
1172	
0068R21C30A30T36E5V1	3" Immersion Length, 1" NPT
ASI-112	
ASI-102	
PS62.UXCAM2HKNAX	
3144PD1A1E5B4M5C2	For use with Component No. 1
543339201	3" Guardsmen
543340210	3" Guardsmen
544553123	3" Guardsmen
544553124	3" Guardsmen
544553131	3" Guardsmen
540305208	3" Guardsmen
640704001	3" Guardsmen
644420401	3" Guardsmen
540292100	3" Guardsmen
646630401	3" Guardsmen
543856103	3" Guardsmen
543643202	3" Guardsmen
541454212	6" Sentry
541455212	6" Sentry
542363211	6" Sentry
542364211	6" Sentry
544506101	6" Sentry
	-
544506810	6" Sentry
544506827	6" Sentry
544115202	6" Sentry
643729401	6" Sentry
645457402	6" Sentry
541685212	6" Sentry
54440103	6" Sonta
544440103 645690401	6" Sentry 6" Sentry
544114201	,
543851212	6" Sentry 6" Sentry
2" over Gear Pulse Meter	o denuy

Pipeline Research Council International

Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

COMPONENT	APPLICATION	MATERIALS	MANUFACTURER
Bearing	Meter, F4 A1	Retainer - Lnp Type 3 Peek Balls - 440C Stainless Steel 003775001 - Shaft - Ms3002801 - Astm A 564 Type 630 Condition A 512077001 - Shaft - Ms3002801 - Astm A 564 Type 630 Condition A 512583001 Cover (Sub Assy) - 511999001 (Weldment) - 511973001 - Boss - Ms1001101 - Sae J 403 May 94 Aisi 1215 Cold Finished 512001001 - Plate - Ms1007803 - Astm A 516 Grade 70 512008001 - Block - Ms1002302 - Astm A 29 512011001 - Cover - Ms1002001 - Asme Sa516 Grade 70 512123001 - Boss - Ms1001101 - Sae J 403 May 94 Aisi 1215 Cold Finished	Smith
Cover	Meter, F4 A1	519882002 - Bushing - Ms5000302 - Powder Metal, Iron & Carbon Steel Mpif Std. 35 F-0008-20 641007401 - Pin - Steel, Chrome Vanadium, Sae 6150, Zinc Plate	Smith
Gland	Meter, F4 A1	003138011 - Ring - Buna "N", Compound 228-70 003141001 - Spring - Ms3005601 - Sae J 230 Dec88 302 Stainless Steel 013117001 - Shaft - Ms6000201 - Astm D4181 518631001 - Follower - Ms3003001 - Sae J 405 Jan89 Aisi Type 303	Smith
		512581002 (Mach) - 512597002 - 504064002 - Pad - Ms1001201 - Sae J 403 May 94 Aisi 12L14 Cold Finished 511948002 - Nozzle - Ms1008001 - Asme Sa216 Grade Wcb 511974001 - Foot - Ms1002403 - Astm A 36 512072001 - Fitting - Ms1008007 - Asme Sa216 Grade Wcb 515863002 - Ring - Ms1002104 - Asme Sa 53 Gr B Type S Or Type E Or Asme Sa106 Gr B Type S 517416001 - Ring - Ms1002001 - Asme Sa516 Grade 70 518544003 - Shell - Ms1002001 - Asme Sa516 Grade 70 518545003 - Strip - Ms1002001 - Asme Sa516 Grade 70 641609412 - Head - Ms1002001 - Asme Sa516 Grade 70	
Housing	Meter, F4 A1	553704001 - Flange - Ms1013102 - Asme Sa-105 Or Astm A-105	Smith
O-Ring	Meter, F4 A1	Ms7000303 - Nitrile (Buna N), 70 Durometer	Smith
Plate	Meter, F4 A1	Ms3001201 - Sae J 405 Jan89 Aisi Type 440C	Smith
Plug	Meter, F4 A1	1010-1018 Steel, Zinc Plated	Smith
Plug	Meter, F4 A1	Ms1007504 - Astm A 105	Smith
Plug	Meter, F4 A1	Ms1007504 - Astm A 105	Smith
Ring	Meter, F4 A1	Ms3005601 - Sae J 230 Dec88 302 Stainless Steel	Smith
Screw C	Meter, F4 A1	Steel, Medium Carbon, S.A.E. Grade 5	Smith
Shaft	Meter, F4 A1	065217402 - Pin - Stainless Steel, 18-8 Type 303 512068002 - Shaft - Ms3000301 - Sae J 405 Jan89 Aisi Type 303	Smith
Shaft	Meter, F4 A1	512065001 - Coupling - Ms1001201 - Sae J 403 May 94 Aisi 12L14 Cold Finished 512134001 - Shaft - Ms3002801 - Astm A 564 Type 630 Condition A	Smith

MANAGING RISK

MODEL №

ADDITIONAL INFO

070360002

512125001 518630001

511982001

512116001

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

COMPONENT	APPLICATION	MATERIALS	MANUFACTURER
	AFFLIGATION	001634001 - Pin - Ms3001201 - Sae J 405 Jan89 Aisi Type 440C	WANUFAUIUKEK
		001723400 - Nut - Ms1009801 - Low Carbon Steel (Less Than .30% Carbon) Cold Finished	
		002198002 - Spring - Ms3006701 - Sae J 217 Dec88 17-7 Ph Stainless Steel	
		003526002 - Screw - Ms3001001 - Sae J 405 Jan89 Aisi Type 416 003527001 - Nut - Ms1008601 - Sae J 995 Jun79 Grade 2	
		005535800 - Sae 2330, Heat Treated To Rockwell C Scale 40-50, Zinc Plated	
		006100002 - Screw M - Low Carbon, Zinc Plate	
		006140002 - Screw C - S.A.E. Grade 5, Zinc Plate	
		006325002 - Screw C - Steel, Low Carbon, Zinc Plate 006519001 - Bearing - 440C Stnl Stl Races	
		440C Stril Sti Balls	
		Stnl Stl Retainer	
		007900400 - Pin - Ms1015001 - Sae J 403 May 94 Aisi 1213 - 1215 Cold Finished	
		008251001 - Pin - Ms3000401 - Sae J 405 Jan89 Aisi Type 304	
		008253002 - Rotor - 008253002 Rotor (Sub Assy) - 001636001 - Dowel - Ms3001201 - Sae J 405 Jan89 Aisi Type 440C 003791001 - Rotor - Ms1007201 - Astm A 48 Class 25	
		003792001 - Cover - Ms1007201 - Astm A 48 Class 25	
		006100002 - Screw M - Low Carbon, Zinc Plate	
		008900001 - Blade - Ms4005401 - Astm B 108 Aisi 355.0 T71 Temper	
		008901001 - Blade - Ms4005401 - Astm B 108 Aisi 355.0 T71 Temper	
		009552400 - Nut - Steel, Cadmium Plated 009593400 - Pin - Steel, Chrome Vanadium Sae 6150, Zinc Plated	
		009606400 - Screw M - Ms1000202 - Sae J 403 May 94 Aisi 1008 - 1020 Cold Finished	
		010525400 - Screw C - Ms1008302 - Sae J 429 Aug83 Grade 5	
		011226001 - Clamp - Ms3003502 - Type 301, 302 Or 304	
		011681001 - Roller - Ms3001201 - Sae J 405 Jan89 Aisi Type 440C 064150001 - Ring - Spring Carbon Steel Sae 1065-1090	
		072186001 - Pitot - Ms1003501 - Astm A 1008	
		511875001 - Cover - Ms1007201 - Astm A 48 Any Year Of Revision Class 25	
		511876001 - Shaft - Ms3001001 - Sae J 405 Jan89 Aisi Type 416	
		511945001 - Arm - Ms1007602 - Astm A 536-84 Gr. 60-40-18 006505002 - Blue - Ms1007504 - Astm A 105	
		006505002 - Plug - Ms1007504 - Astm A 105 511997010 - Body - Ms1007201 - Astm A 48 Any Year Of Revision Class 25	
		512002001 - Lug - Ms3000201 - Stainless Steel Sheet & Plate Type 302, 304 Or 316	
		512062001 - Gear - 512061001 - 512014001 - Ms1001101 - Sae J 403 May 94 Aisi 1215 Cold Finished	
		512015001 - Ms3002801 - Astm A 564 Type 630 Condition A	
		513202001 - Ms1015001 - Sae J 403 May 94 Aisi 1213 - 1215 Cold Finished 512064002 - Coupling - Ms1001101 - Sae J 403 May 94 Aisi 1215 Cold Finished	
		512073001 - Pin - Ms3000301 - Sae J 405 Jan89 Aisi Type 303	
		512074001 - Collar - Ms1001101 - Sae J 403 May 94 Aisi 1215 Cold Finished	
		512075001 - Spacer - Ms3000201 - Stainless Steel Sheet & Plate Type 302, 304 Or 316	
		512112001 - Plate - 003795001 - Ms1002301 - Astm A 29 Grade 1018 Cold Finished 011684001 - Ms1000701 - Sae J 403 May 94 Aisi 1045 Cold Finished	
		512115001 - Dowel - Ms3002801 - Astm A 564 Type 630 Condition A	
		512714001 - Plate - Ms1002403 - Astm A 36 Hot Rolled	
		512715001 - Key - Ms1000301 - Sae J 403 May 94 Aisi 1018 Cold Finished	
		512719001 - Cover - Ms1002501 - Astm A 1008 Commercial Steel Type B	
		065309002 - Washer - Ms1013501 - Astm F 436 516109001 - Bearing & Clamp - 006523001 - Bearing - 440C Stn. Steel	
		512076001 - Clamp - Ms3003801 - Astm A 240 Type 304 Cold Rolled Annealed & Pickled	
		517019001 - Cam - Ms1007401 - Sae J 404 Apr 94 Aisi 4150 Hot Rolled	
		517085001 - Block - Ms1007201 - Astm A 48 Class 25	
		519882001 - Bushing - Ms5000302 - Powder Metal, Iron & Carbon Steel Mpif Std. 35 F-0008-20 641044401 - Screw M - Steel (Sae Grade 5), Zinc Plate	
		642482406 - Washer - Spring Steel, Zinc Plated	
		643249401 - Washer - 302 Stainless Steel, Full Hard, Cold Rolled	
Mechanism	Meter, F4 A11	643764402 - Screw C - Stainless Steel Type 316 Elc.	Smith
	Pipeline storage & truck		
Automatic Tank Gauge	terminal		MTS
	Pipeline storage & truck		
Back Pressure control Valves	terminal		Daniel
	Pipeline storage & truck		
Block Valves	terminal		Foster
ANEUS813GTQU			

ANEUS813 EP001681 Date: April 23, 2010

MANAGING RISK

MODEL № 517153001

ADDITIONAL INFO

Pipeline Research Council International

Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

COMPONENT	APPLICATION	MATERIALS	MANUFACTURER
Block Valves	Pipeline storage & truck terminal		OFM
Block Valves	Pipeline storage & truck terminal		Orbit
Block Valves	Pipeline storage & truck terminal		True Seal
Block Valves	Pipeline storage & truck terminal		WKM
Gate Valves	Pipeline storage & truck terminal		Velan
Gravitometers	Pipeline storage & truck terminal		Densitrack
Gravitometers Meters (PD)	Pipeline storage & truck terminal		Solatron Brodie
Injection Pump	Pipeline storage & truck terminal		Roper
Injection pumps	Pipeline storage & truck terminal		FMC
Mainline Pump	Pipeline storage & truck terminal		United
Pressure Relief Valves	Pipeline storage & truck terminal		Daniel
Prover ball	Pipeline storage & truck terminal		Drinkwater
Prover ball	Pipeline storage & truck terminal		Enduro
Sampler pumps	Pipeline storage & truck terminal		Micropump
Side line Tank Gauge	Pipeline storage & truck terminal		Varec
Tank seals	Pipeline storage & truck terminal		
Temp. & Pres. Transmitters	Pipeline storage & truck terminal		Rosemont
Twin Seal Valves	Pipeline storage & truck terminal		General
Plunger	Prover	Stainless Steel	
Sphere	Prover	Polyurethane	
Component	Application	Materials	Manufacturer
Case and impellar rings, throat and throttle bushings	Pump	Bronze B584-903, B584-932, B584-936	United
Impeller	Pump	Bronze B584-905, B584-958	United
Mechanical Seal	Pump	Tungsten Carbide / Silicon Carbide, Carbon (various grades), AISI 313, Viton ${ m I\!B}$ B	John Crane
Wear rings/bushings	Pump	Graphalloy	Graphite Metallizing Corp
Case	Pump	Meeh	Byron Jackson
Case	Pump	carbon steel	Flowserve
Case	Pump	A 120 GR B	Goulds
Case	Pump	A 216	Goulds
	Pump	Steel	Goulds

MANAGING RISK

MODEL №

ADDITIONAL INFO

7 stage 6x6x11

Model #

Add. Info

8B

Byron Jackson 20 HQH-VTP

Goulds 12 x 11 DC-VIC Goulds 12 x 11 DC-VIC Goulds 20 x 36 TMC

Pipeline Research Council International

Determining the Effects of Ethanol on Pump Station Facilities - PR-186-09204

COMPONENT	APPLICATION	MATERIALS	MANUFACTURER
Case	Pump	Steel	Johnston
Case	Pump	Steel	Johnston
Case	Pump	Steel	Johnston
Case	Pump	A 216	Sulzer
Case	Pump	A 216 WCB	Sulzer
Case	Pump	A 216	United
Case	Pump	A 216	United
Case	Pump	A 216	United
Case	Pump	A 216 WCB	United
Case	Pump	A 216 WCB	United
Case	Pump	A 216 WCB	United
Case	Pump	A 216 WCB	United
Case	Pump	Cast Steel	United
Case	Pump	Steel	United
Case	Pump	Steel	United
Case	Pump		United
Case/Impeller wear rings	Pump	316 SS	Byron Jackson
Case/Impeller wear rings	Pump	Bronze	Goulds
Case/Impeller wear rings	Pump	Bronze	Goulds
Case/Impeller wear rings	Pump	Ni Resist	Goulds
Case/Impeller wear rings	Pump	Bronze	Johnston
Case/Impeller wear rings	Pump	Bronze	Johnston
Case/Impeller wear rings	Pump	Bronze	Johnston
Case/Impeller wear rings	Pump	Cast Iron-inco Ni Resist I/13% Cr Steel	Sulzer
Case/Impeller wear rings	Pump	Ni-Resist I/ CA6NM	Sulzer
Case/Impeller wear rings	Pump	A 436 Ni Resist/A 216	United
Case/Impeller wear rings	Pump	Cast Iron-inco Ni Resist I/13% Cr Steel	United
Case/Impeller wear rings	Pump	Ni Resist I	United
Case/Impeller wear rings	Pump	Ni Resist I	United
Case/Impeller wear rings	Pump	Ni Resist/440 HT	United
Case/Impeller wear rings	Pump	Ni Resist/440 HT	United
Case/Impeller wear rings	Pump	Ni Resist/440 HT	United
Case/Impeller wear rings	Pump	Ni-Resist I	United
Case/Impeller wear rings	Pump	Steel	United
Case/Impeller wear rings	Pump		United
Case/Impeller wear rings	Pump		United
Cyclone Separator	Pump	Heanium (Ceramic), Viton $^{\textcircled{R}}$, 1018 Steel	

MANAGING RISK

MODEL №

ADDITIONAL INFO

Johnston 20 DHC-24 DC Johnston 24 EC-20 QHC Johnston 24 EC-24 QLC-2-2 - Bingham 14 x 14 x 12.5 HSB Bingham 20 x 24 x 34 HSB United 8 x 13 WMSN-4 United 10 x 12 x 15.5 BFH United L – 8 x 13 WMSNL United 20 x 20 x 28 DVS United 24 x 24 x 24 DVS United 24 x 24 x 33 DVS United V - 8 x 13 WMSN-Μ United U 6 x 11 WMSNDH United 14 x 28 DVS United 16 x 25 DVS United 8 BFH-C Byron Jackson 20 HQH-VŤP Goulds 12 x 11 DC-VIC Goulds 20 x 36 TMC Goulds 12 x 11 DC-VIC Johnston 20 DHC-24 DC Johnston 24 EC-20 QHC Johnston 24 EC-24 QLC-2-4 - Bingham 14 x 14 x 12.5 HSB Bingham 20 x 24 x 34 HSB United V – 8 x 13 WMSN-Μ United 10 x 12 x 15.5 BFH United 8 x 13 WMSN-6 United L – 8 x 13 WMSNL United 20 x 20 x 28 DVS United 24 x 24 x 24 DVS United 24 x 24 x 33 DVS United 16 x 25 DVS United U 6 x 11 WMSNDH United 8 BFH-C United 14 x 28 DVS

Pipeline Research Council International

Determining the Effects of Ethanol on Pump Station Facilities - PR-186-09204

COMPONENT	APPLICATION	MATERIALS	MANUFACTURER
Diffuser	Pump	Cast Iron	Johnston
Diffuser	Pump	Cast Iron	Johnston
Diffusers	Pump	316 SS	Goulds
Diffusers	Pump	Cast Iron	Goulds
Diffusers	Pump	(1) Cast Iron/VIT; (6) Cast Iron/Scothkote	Johnston
Impeller	Pump	Meeh	Byron Jackson
Impeller	Pump	Bronze	Flowserve
Impeller	Pump	carbon steel	Flowserve
Impeller	Pump	cast iron	Flowserve
Impeller	Pump	Aluminum Bronze	Goulds
Impeller	Pump	Bronze	Goulds
Impeller	Pump	Steel	Goulds
Impeller	Pump	Bronze	Johnston
Impeller	Pump	Bronze	Johnston
Impeller	Pump	Bronze	Johnston
Impeller	Pump	CA6NM	Sulzer
Impeller	Pump	Cast Steel	Sulzer
Impeller	Pump	A 216 WCB	United
Impeller	Pump	A 216 WCB	United
Impeller	Pump	A 216 WCB	United
Impeller	Pump	A 216 WCB	United
Impeller	Pump	Cast Steel	United
Impeller	Pump	Cast Steel	United
Impeller	Pump	Cast Steel	United
Impeller	Pump	Cast Steel	United
Impeller	Pump	Cast Steel	United
Impeller	Pump		United
Impeller	Pump		United
Seal	Pump	Viton [®] B	Flowserve
Seal Face	Pump	Carbon	Flowserve
Seal Face	Pump	Silcar	Flowserve
Seal Face	Pump	Tungsten Carbide	Flowserve
Seal Sleeve	Pump	316 SS	Johnston
Seal Sleeve	Pump	316 SS	Sulzer
Seal Sleeve	Pump	316 SS	Sulzer
Seal Sleeve	Pump	316 SS	United
Seal Sleeve	Pump	316 SS	United
Seal Sleeve	Pump	316 SS	United
Seal Sleeve	Pump	316 SS	United

ANEUS813GTQU EP001681 Date: April 23, 2010

MANAGING RISK

MODEL №

ADDITIONAL INFO

Johnston 24 EC-20 QHC Johnston 24 EC-24 QLC-2-6 Goulds 12 x 11 DC-VIC Goulds 20 x 36 TMC Johnston 20 DHC-24 DC Byron Jackson 20 HQH-VTP

Goulds 20 x 36 TMC Goulds 12 x 11 DC-VIC Goulds 12 x 11 DC-VIC Johnston 20 DHC-24 DC Johnston 24 EC-20 QHC Johnston 24 EC-24 QLC-2-3 Bingham 20 x 24 x 34 HSB - Bingham 14 x 14 x 12.5 HSB United 20 x 20 x 28 DVS United 24 x 24 x 24 DVS United 24 x 24 x 33 DVS United V – 8 x 13 WMSN-Μ United 8 x 13 WMSN-5 United 10 x 12 x 15.5 BFH United 16 x 25 DVS United L – 8 x 13 WMSNL United U 6 x 11 WMSNDH United 8 BFH-C United 14 x 28 DVS

Use Dupont for FI

Johnston 24 EC-24 QLC-2-5 - Bingham 14 x 14 x 12.5 HSB Bingham 20 x 24 x 34 HSB United 8 x 13 WMSN-7 United 10 x 12 x 15.5 BFH United 14 x 28 DVS United 16 x 25 DVS

Pipeline Research Council International

Determining the Effects of Ethanol on Pump Station Facilities - PR-186-09204

COMPONENT	APPLICATION	MATER	IALS MANUFACTURER
Seal Sleeve	Pump	316 SS	United
Seal Sleeve	Pump	316 SS	United
Seal Sleeve	Pump	316 SS	United
Seal Sleeve	Pump	316 SS	United
Seal Sleeve	Pump	316 SS	United
Seal Sleeve	Pump	316 SS	United
Seal Sleeve	Pump	Cast Iron	United
Seal Sleeve	Pump		
Shaft	Pump	416 SS	Byron Jackson
Shaft	Pump	4140	Goulds
Shaft	Pump	316 SS	Goulds
Shaft	Pump	416 SS	Goulds
Shart	Fump	410.00	Goulds
Shaft	Pump	A 322/4140	Sulzer
Shaft	Pump	A 434/4140	Sulzer
Shaft	Pump	A 322/4140	United
Shaft	Pump	A 322/4140	United
Shaft	Pump	A 434/4140	United
Shaft	Pump	A 434/4140	United
Shaft	Pump	A 434/4140	United
Shaft	Pump	A322/4140	United
Shaft	Pump	A322/4140 Ni Plated	United
Shaft	Pump	Steel	United
Shaft	Pump	Steel	United
Shaft	Pump		United
Shaft	Pump	316 SS	
Shaft	Pump	316 SS	
Shaft	Pump	4140 Ni Plated	
Shaft	Pump	Steel	
Wear rings/bushings	Pump (Centrigal)	PEEK (polyetheretherketone)	Victrex
3/4" Pipe	Pump API 11 SW SS Cano 3/4" #1500 RF	A312 316L	Flowserve
Cross	Pump API 11 SW SS Cano 3/4" #1500 RF	A182-92 Gr F	Flowserve
Elbow	Pump API 11 SW SS Cano 3/4" #1500 RF	AISI 316	Flowserve
Flange	Pump API 11 SW SS Cano 3/4" #1500 RF	A182-92 Gr F	Flowserve
Flexitallic Gasket	Pump API 11 SW SS Cano 3/4" #1500 RF	AISI 316+Flexicarb	Flowserve
Nipple	Pump API 11 SW SS Cano 3/4" #1500 RF	A312 316L	Flowserve
Orifice Plate	Pump API 11 SW SS Cano 3/4" #1500 RF	AISI 316	Flowserve

ANEUS813GTQU EP001681 Date: April 23, 2010

MANAGING RISK

MODEL №

ADDITIONAL INFO

United 20 x 20 x 28 DVS United 24 x 24 x 24 DVS United 24 x 24 x 33 DVS United L – 8 x 13 WMSNL United U 6 x 11 WMSNDH United V – 8 x 13 WMSN-Μ Johnston 20 DHC-24 DC United 8 BFH-C Byron Jackson 20 HQH-VTP Goulds 12 x 11 DC-VIC Goulds 20 x 36 TMC Goulds 12 x 11 DC-VIC - Bingham 14 x 14 x 12.5 HSB Bingham 20 x 24 x 34 HSB United 8 x 13 WMSN-3 United L – 8 x 13 WMSNL United 20 x 20 x 28 DVS United 24 x 24 x 24 DVS United 24 x 24 x 33 DVS United 10 x 12 x 15.5 BFH United 16 x 25 DVS United 14 x 28 DVS United U 6 x 11 WMSNDH United 8 BFH-C Johnston 20 DHC-24 DC Johnston 24 EC-24 QLC-2-1 United V - 8 x 13 WMSN-Μ Johnston 24 EC-20 QHC

- 1 CANRE0066
- 1 ACCCR0010
- 1 ACCNV0023
- 1 ACCBR0033
- 1 027985
- 1 BW007520160NC
- 1 A102495DB

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

COMPONENT	APPLICATION	MATERIALS	MANUFACTURER
Stud	Pump API 11 SW SS Cano 3/4" #1500 RF	AISI 317	Flowserve 1
Baseplate	Pump Baseplate and Coupling	AISI 1010-25	Flowserve 1
Coupling Guard	Pump Baseplate and Coupling	AISI 1010-25	Flowserve
Hex Head Screws	Pump Baseplate and Coupling	AISI J429 Gr	Flowserve
Shim	Pump Baseplate and Coupling	AISI 18-8	Flowserve 1
Casing Gasket	Pump Bearing Housing	Armstrong TN 9004	Flowserve 1
Flange Cover	Pump Bearing Housing		Flowserve 1
Mechanized Casing	Pump Bearing Housing	A215 Gr WCB	Flowserve 1
Pump	Pump for loading rack	Cast steel case, bronze impeller	2 Flowserve
Shaft Pump	Pump Kit Shaft Pump	D3114=A434 CL BC TP	Flowserve 1
Square Key	Pump Kit Shaft Pump	D9051=AISI 316	Flowserve 1
Hex Nut	Pump Mechanical Seal	A194 CL 2H	Flowserve 1
Stud	Pump Mechanical Seal	AISI 316	Flowserve 1
Washer	Pump Mechanical Seal	AISI 316	Flowserve 1
1" Pipe	Pump Mechanized Casing	ASTM A53	Flowserve 1
3/4" Pipe	Pump Mechanized Casing	A53 Gr B	Flowserve 1
Blind Nut	Pump Mechanized Casing	A194 Grd 7	Flowserve 1
Flange	Pump Mechanized Casing	A105	Flowserve 1
Foundary Casing Lower Half	Pump Mechanized Casing	A216 GR WCB	Flowserve 1
Hex Nut	Pump Mechanized Casing	A194 CL 2H	Flowserve 1
Pin	Pump Mechanized Casing	AISI 1038/45	Flowserve 1
Square Head Screws	Pump Mechanized Casing	AISI J429 Gr	Flowserve 1
Stud	Pump Mechanized Casing	A193 GR B7	Flowserve 1
Washer	Pump Mechanized Casing	D9053 = AISI 1010-25	Flowserve 1
Allen Screw	Pump Radial BRG HSG	AISI J429 Gr 5HT	Flowserve 1
Babbitt Bearing	Pump Radial BRG HSG	AISI 40+BABBI	Flowserve 1
Breather Plug	Pump Radial BRG HSG	AISI 1010-25	Flowserve 1
Connector	Pump Radial BRG HSG	AISI 316	Flowserve 1
Cooling Tube	Pump Radial BRG HSG	AISI 316	Flowserve 1
Dowel Pin	Pump Radial BRG HSG	AISI 1010-25	Flowserve 1
Hex Head Screws	Pump Radial BRG HSG	AISI J429	Flowserve 1
Hex Nut	Pump Radial BRG HSG	SAEJ429GR5HT	Flowserve 1
Nipple	Pump Radial BRG HSG	A53 Gr B	Flowserve 1
Oiler Ring	Pump Radial BRG HSG	AISI 621	Flowserve 1
Plug	Pump Radial BRG HSG	AISI 1010-25	Flowserve 1
Radial BRG. HSG.DMX Serie 350 Ball/SLV	Pump Radial BRG HSG	A216 GR WCB	Flowserve 1
Union Double	Pump Radial BRG HSG	A105	Flowserve 1
Casing Wear Ring	Pump Rotating Element	A479 TP 316L+ST.6	Flowserve 1
Casing Wear Ring Back	Pump Rotating Element	A351 GR CF3M +ST6	Flowserve 1
Center Bushing	Pump Rotating Element	C4016=IR 913	Flowserve 1
Center Sleeve	Pump Rotating Element	D4011=IR 655	Flowserve 1

ANEUS813GTQU EP001681 Date: April 23, 2010

MODEL №	ADDITIONAL INFO
1 A07512DB	
1 11151339	
1 11151397	
1 4R351734	
1 A101887CK	
1 11151698	6x11 DMX
1 608211	6x11 DMX
1 11151697	6x11 DMX
2K4x3-13RV M3 ST FPD - DCI	
1 11151700	6x11 DMX-7
1 C02514DB	6x11 DMX-7
1 4R4821EM	
1 A07511DB	
1 4R3455DB	
1 CANRE0029	6x11 DMX-7
1 CANRE0028	6x11 DMX-7
1 10132835	6x11 DMX-7
1 ACCBR0080	6x11 DMX-7
1 11151290	6x11 DMX-7
1 4R4821EM	6x11 DMX-7
1 AA642511EK	6x11 DMX-7
1 TOCAC003334	6x11 DMX-7
1 A17508AC	6x11 DMX-7
1 62282108	6x11 DMX-7
1 4N0303534	Sleeve Refrigeration
1 62572946	Sleeve Refrigeration
1 A 100648EH	Sleeve Refrigeration
1 ACTNV0002	Sleeve Refrigeration
1 62110051	Sleeve Refrigeration
1 AA757409EH	Sleeve Refrigeration
1 4R385434	Sleeve Refrigeration
1 4R659734	Sleeve Refrigeration
1 N02515080PB	Sleeve Refrigeration
1 62571609	Sleeve Refrigeration
1 4R2999EH	Sleeve Refrigeration
1 0625373	Sleeve Refrigeration
1 ACCUD0031	Sleeve Refrigeration
1 11151337	6x11 DMX
1 11151341	6x11 DMX
1 62790530	6x11 DMX
1 62446794	6x11 DMX

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

COMPONENT	APPLICATION	MATERIALS	MANUFACTURER
Coupling Nut	Pump Rotating Element	AISI 1213-15	Flowserve
Impeller	Pump Rotating Element	A487 Gr CA6NM	Flowserve
Impeller Wear Ring	Pump Rotating Element	A479 TP 316L+ST.1	Flowserve
Set Screw	Pump Rotating Element	AISI 316	Flowserve
Split Ring	Pump Rotating Element	AISI 316	Flowserve
Stuffing Box Bushing	Pump Rotating Element	D4021=A479 TP 410	Flowserve
Throat Bushing	Pump Rotating Element	D4011=IR 655	Flowserve
Throttling Bushing	Pump Rotating Element	D4011=IR 655	Flowserve
Lock Nut	Pump Thrust BRG HSG	AISI 1010-25	Flowserve
Oil Baffle Plate	Pump Thrust BRG HSG	AISI 1010-25	Flowserve
Shim	Pump Thrust BRG HSG	AISI 1010-25	Flowserve
Thrust Sleeve BRG. 7312	Pump Thrust BRG HSG	AISI 1213-15	Flowserve
Component	Application	Materials	Manufacturer
Washer Lock	Pump Thrust BRG HSG	AISI 1010-25	Flowserve
Body Suspension	Surge Relief Flow Valves	ASTM A216, A352	Danflow
O=ring	Surge Relief Flow Valves	Nylon	Danflow
Retainer	Surge Relief Flow Valves	ASTM A216, 17-4 PH SS	Danflow
Seat Trim	Surge Relief Flow Valves	316SS	Danflow
Spring	Surge Relief Flow Valves	Cr-V (Alloy Steel), 18-8 SS	Danflow
Air Eliminator	Truck Loading Terminal		Smith
Butterfly Valves	Truck Loading Terminal		Watts Regulator
Check Valve	Truck Loading Terminal		Sharpe
Check Valve	Truck Loading Terminal		Sharpe
Check Valve	Truck Loading Terminal		Wheatley
Dry Break Coupler	Truck Loading Terminal		Gardner Denver
Flow Check	Truck Loading Terminal	Viton®	Young Oil Tools
	0	Viton®	-
Flow Checks	Truck Loading Terminal		Davis
Flow Control Valve	Truck Loading Terminal		Smith
Flow Control Valve	Truck Loading Terminal		Smith
Gate Valve	Truck Loading Terminal		Crane
Gate Valve	Truck Loading Terminal		Crane
Gate Valve	Truck Loading Terminal		TVI
Gate Valve	Truck Loading Terminal		TVI
Gate Valve	Truck Loading Terminal		TVI
Gate Valve	Truck Loading Terminal		TVI
Gate Valve	Truck Loading Terminal		TVI
Meters	Truck Loading Terminal		Smith
PD Meter	Truck Loading Terminal	Housing = Carbon Steel, End Plates = Cast Aluminum, Rotors, Cast Aluminum, Hard Anodized, Rotor Shafts = 17-4 ph SS, Rotor Bearings = SS Ball Bearings, O'rings = Viton Standard	Brodie
Pressure relief	-	Deanings – 33 Bail Beanings, Onings – Viton Standard	Ful Flo
	Truck Loading Terminal		
Pump	Truck Loading Terminal		Goulds Pump
Pump	Truck Loading Terminal	Dustile iron	Goulds Pump
Pump	Truck Loading Terminal	Ductile Iron	Ruhrpumpen
Thermal Relief Valve	Truck Loading Terminal		Stra-Val
Turbine Meter	Truck Loading Terminal		Smith

ANEUS813GTQU EP001681 Date: April 23, 2010

MANAGING RISK

MO	DE	LN	Q

ADDITIONAL INFO

1 07328685	6x11 DMX
1 10164514	6x11 DMX
1 11151328	6x11 DMX
1 4R1043DB	6x11 DMX
1 62040373	6x11 DMX
1 62394473	6x11 DMX
1 11151527	6x11 DMX
1 62723432	6x11 DMX
1 AB1068N12EH	Ball/Sleeve Refrigeration
1 62110317	Ball/Sleeve Refrigeration
1 A 102381EH	Ball/Sleeve Refrigeration
1 62119037	Ball/Sleeve Refrigeration
Model #	Add. Info
1 AB1068W12EH	Ball/Sleeve Refrigeration

QFII	4"
781E791	CS
12" – 25 -1 – 1 – 4	12" 150 # CS
6" – 25 -1 – 1 – 4	6" 150 # CS
22531C	6" CS
J0451 - 051	
Style WC	4" CS (Viton Seats (o-rings))
1260	4" CS (Viton [®] Seats)
210	4" CS
210	4" 150#
N2 1801	6" CS
N2231B	4" CS
	6" CS
1053	2" CS
125	8" CS
967	6" CS
	4" CS
F4 – A1	4" CS
model 8281	Birotor plus
VJ4RSP	1" CS
776D771	4 x 6 – 13 CS Body (S.S. Seal)
	3 x 4 - 13 CS Body (S.S. Seal)
H50 12x10x15	Ductile Iron
1" RV05 – IDT	1"
K2GDA003C00	3", Guardsman LSJ-H Series

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

COMPONENT	APPLICATION	MATERIALS	MANUFACTURER	MODEL №	ADDITIONAL INFO Sliding vane pump, ductile irc
Vane Pump	Truck Loading Terminal		Blackmer	#GX4B	300 gpm @ 147' HD
alve Stem Seal Packing	Valve Stem Seal	Viton	Parker	EC Pak and Poly Pak	Most common matl is Viton
Ball Valve			Apollo	Ball Valve	Small diameter
Ball Valve			WKM	Ball Valve	Small diameter
Casing			Flowserve, Sulzer	Various	ASMT A216 Grade WCB
Casing Ring		PEEK	Flowserve	Various	Poly Ether Ether Ketone
Casing Ring, Impeller Ring Casing Ring, Impeller Ring, Throat Bushing, Throttle Bushing, Throttle Sleeve, Throat Sleeve		AISI 420, Laser Hardened	Flowserve, Sulzer	Various Various	Stellite 6, Stellite 1 AISI 420, Laser Hardened
Casing Ring, Impeller Ring, Throat Bushing, Throttle Bushing, Throttle Sleeve,		AISI 420, Laser Hardened	Flowserve	vanous	AISI 420, Laser Hardened AISI 316L or ASTM A351 Gra
Throat Sleeve		AISI 316L or ASTM A351 Grade CF3	Flowserve, Sulzer	Various	CF3
Casing Stud		ASTM A193 Grade B7	Flowserve, Sulzer	N/A	ASTM A193 Grade B7
Check Valve			M & J Valve	Swing Check Valve	Various sizes
Check valve		Viton	Wheatley		Mainline and station (O-Ring Viton
Control Valve 16" line			Fisher		Packing unknown
Component	Application	Materials	Manufacturer	Model #	Add. Info
Control valve 20" line			Mason Neilson		Packing unknown
Differential pressure switch		Viton	Orange research		O-ring viton
Drain Valves		Viton	Grove	4000 D-seal	O-Rings Viton
Drain Valves			Orbit		Packing Insulating gasket used around meters to insulate from catho
Gasket			Advanced Products	Flange Kit, FNDW	protection system. Main Line Pump parting flang
Gasket			Armstrong	TN-9004	gaskets Various Sizes. CG used in
Gasket			Flexitallic	CG, CGI	terminals, CGI used in mainli
Basket			Garlock	RW, RWI	Limited uses
Sate Valve			M & J Valve	303A	Gate Valve, various sizes
Gate Valve			M & J Valve	Expanding Gate Valve Compact Expanding Gate	Various sizes
Gate Valve			M & J Valve	Valve	Various sizes, limited use
Sate valve 16" line			Grove		Mainline valve (O-Ring) Vito
Sate valve 20" line			WKM		Mainline valve (Packing)
Gate Valves		Viton	Foster - Ingram Cactus		O-Rings Viton
mpeller		ASTM A487 Grade CA6NM	Flowserve, Sulzer	Various	ASTM A487 Grade CA6NM
mpellers		Cast Bronze	Flowserve, Sulzer	Various	Cast Bronze
Keys, Various Components		AISI 316	Flowserve, Sulzer	Various	AISI 316
//L Pump		Viton	BWIP	8x10x13 M MSN 3-stage	Seals have Viton o-rings
//echanical Seal		AISI 316SS, Silicon Carbide / Carbon, Viton	Flowserve	QB – 5U4X	AISI 316SS, Silicon Carbide Carbon, Viton
Meters (PD)			A. O. SMITH	D-200	
Meters (PD)			A. O. SMITH	D-200 D-75	
Meters (PD)			A. O. SMITH A. O. SMITH	JA-10S7	
	Application	Mataviala			Add Info
Component	Application	Materials	Manufacturer	Model #	Add. Info

ANEUS813 EP001681 Q Date: April 23, 2010

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

COMPONENT	APPLICATION	MATERIALS	MANUFACTURER
Meters (PD)			Brodie/rockwel
Meters (PD)			Brooks
Meters (PD)			Smith
		Body, Suspension, Rotor Blades, Rotor Rim, Cones = 304 or 316SS, Flanges = Carbon steel, 304, or 316SS, Rotor Blades = 430SS	
		or Ni 200, Sleeve and Journal Bearings = Cemented Tungsten Carbide, Rotor Hub, 420SS, 7075 AI, 304SS, and 316SS, Rim Buttons	
Meters (PT)		= Hi Mu 80, Shaft = 304SS (Chrome Plated) or 316SS	Daniel
Meters (S)			Caldon
Meters (S)			Caldon
Meters (S)			Caldon
Meters (S)		A216	Faure Herman
Meters (S)			Krohne
Meters (S)			Panametrics
Meters (S)			Smith
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			A. O. SMITH
Meters (TUR)			Brooks
Component	Application	Materials	Manufacturer
Meters (TUR)			Brooks
Meters (TUR)			Daniels

MODEL №	ADDITIONAL INFO
B-95	
B071ACAAAA-CCAA	
D-200	
F4-S1	
M-75	
S-100	
S-75	
W-75	
3 through 24 inch liquid tubrine meters	
240C	
240CT640SS300GP	
LEFM 240C	
FH8500	
3 beam beta uni	
Altosonic V AltoV	
UFM 3030	
UFM 3030 UFM 3030 K	
UFM 3030 K-DIV1	
UFM Alto 5	
UFM3030 3-beam	
DF 868	
W-90	
6CA2-1	
6CS4-6	
K2DFA00310	
LF (Low Flow)	
1-6-CA-27	
5C51-7	
6 CA 17	
6SS4C7S	
K2DGAOA1100	
LF6CA1-1	
6CS21	
6-S-S-B-1C-7-S	
8CA2-1	
Serial #DM 2210	
7402-439054-ML	
PARITY	
SN 9003-22813-1	
T04BBD1GAAAAB	
Model #	Add. Info
T06ABF1PA1AAAAA	
1403-3P	

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

COMPONENT	APPLICATION		MATERIALS	MANUFACTURER	2
Meters (TUR)				Daniels	
Meters (TUR)				Daniels	
Meters (TUR)				Daniels	;
Meters (TUR)				Daniels	ć
Meters (TUR)				Daniels	ć
Meters (TUR)				Daniels	
Meters (TUR)				Daniels	(
Meters (TUR)				Daniels	3
Meters (TUR)				Daniels	(
Meters (TUR)				Faure Herman	-
Meters (TUR)				Faure Herman	4
Meters (TUR)				Faure Herman	F
Meters (TUR)				FMC	-
Meters (TUR)				Smith	3
Meters (TUR)				Smith	2
Meters (TUR)				Smith	6
Meters (TUR)				Smith	6
Meters (TUR)				Smith	6
Meters (TUR)				Smith	6
Meters (TUR)				Smith	6
Meters (TUR)				Smith	e
Meters (TUR)				Smith	6
Meters (TUR)				Smith	6
Meters (TUR)				Smith	e
Meters (TUR)				Smith	e
Meters (TUR)				Smith	8
Meters (TUR)				Smith	1
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Component	Application	Materials		Manufacturer	ľ
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ł
Meters (TUR)				Smith	ŀ

ANEUS813GTQU EP001681 Date: April 23, 2010

MODEL №	ADDITIONAL INFO
1403-3PX	
14301-3P	
3401-3P	
3403-#P	
3403-1P	
3403-3P	
3404-3P	
3404IP	
gmpa-h-24	
TLM4-300	
4040164	
FH 710	
T644645592	
3401-3P	
4" GLSJ-H TM	
66T2-02	
6CA-1	
6CA1-2	
6-CA-1-2	
6-CAY-6	
6CS-1-7	
6CS1C-7	
6CS2C1	
6-CSI-71M	
6-S-S-1C-7-S	
8CSIC2S	
A181G12	
K23000	
K2BEA00320	
K2BEA0A200	
K2BEA0A300	
K2BEAOA200	
K2BEB0A400	
K2BED0A310	
K2DEA00310	
K2DGA00200 K2DGA0A320X	
K2DGA0A320X K2DGB0A1000	
K2DGD0A3100	
K-2DHA01320	
K2DHB0B300 Rev.	
K2DHB0B300 Rev.	
Model #	Add. Info
K2DHBOB300 Forw	
K2DHD0A320X	
K-2DJA01320	

Pipeline Research Council International Determining the Effects of Ethanol on Pump Station Facilities – PR-186-09204

COMPONENT	APPLICATION		MATERIALS	MANUFACTURER
Meters (TUR)				Smith
Meters (TUR)				Smith
Meters (TUR)				Smith
Meters (TUR)				Smith
Meters (TUR)				Smith
Meters (TUR)				Smith
Meters (TUR)				Smith
Meters (TUR)				Smith
Meters (TUR)				Smith
Meters (TUR)				Smith
Meters (TUR)				Smith cc20528
Meters (TUR)				Smith Meter
Meters (TUR)				Smith/ #FE14343
Meters (TUR)				Smith/#KC6469
Meters (TUR)				Turbine
Pipe Plugs				Various
Pressure Switch		Viton		Custom control sensor
Pressure Switch				Dwyer Instrument Inc.
Pressure Transmitter		Viton		Rosemount
Prover		Stainless Steel		Brooks
Prover		Stainless Steel		Brooks
Pump		Viton		United
Pump Shaft		AISI 4140		Flowserve, Sulzer
Relief Valve		Viton		Anderson Greewood
Sphere Detector				WeamcoMetric
Strainer				WeamcoMetric
Sump injection pump				Kerr
Sump Pump		Vition		Red Jacket
Sump Tank		Fiberglass		Fluid Containment
Component	Application	Materials		Manufacturer
Twin Seal Valve				Camron

MANAGING RISK

MODEL №	ADDITIONAL INFO
K2DRA	
K2PGBOA310	
K-DHA00320	
KKK2DHB0B300	
PJ201495G	
SENTRY	
Serial DC 21329	
Serial-EH 22523	
Serial-EJ 22916	
WH1934	
Smith Sentry	
K2DFB00400	
Sentry Series	
8-S-S-2C-2	
6CA2C6	
Various	Pipe Sealant
	Wetted parts stainless steel and (O-ring) Viton
	Wetted parts (unknown)
1151	O- Ring Viton
S/N: 8404-23846	
S/N: 8404-2384	
	Mainline pump seals have(O- Rings)Viton
Various	AISI 4140
	O-Rings Viton
Mag-TEK	
FV	Various sizes
	Packing
	O-Rings Viton
2500 gallon	Fiberglass
Model #	Add. Info
	Various sizes Various models

General Twin Seal

Various sizes. Various models (200, 8800, 800, 400, 900)

DNV Energy

DNV Energy is a leading professional service provider in safeguarding and improving business performance, assisting energy companies along the entire value chain from concept selection through exploration, production, transportation, refining, and distribution. Our broad expertise covers Asset Risk & Operations Management, Enterprise Risk Management; IT Risk Management; Offshore Classification; Safety, Health and Environmental Risk Management; Technology Qualification; and Verification.

DNV Energy Regional Offices:

Asia and Middle East

Det Norske Veritas Sdn Bhd 24th Floor, Menara Weld Jalan Raja Chulan 50200 Kuala Lumpur Phone: +603 2050 2888

Europe and North Africa

Det Norske Veritas Ltd Palace House 3 Cathedral Street London SE1 9DE United Kingdom Phone: +44 20 7357 6080

Cleaner Energy & Utilities

Det Norske Veritas AS Veritasveien 1 N-1322 Hovik Norway Phone: +47 67 57 99 00

Nordic and Eurasia

Det Norske Veritas AS Veritasveien 1 N-1322 Hovik Norway Phone: +47 67 57 99 00

North America

Det Norske Veritas (USA), Inc. 1400 Ravello Drive Katy, TX 77449 United States of America Phone: +281-396-1000

Offshore Class and Inspection

Det Norske Veritas AS Veritasveien 1 N-1322 Hovik Norway Phone: +47 67 57 99 00

South America and West Africa

Det Norske Veritas Ltda Rua Sete de Setembro 111/12 Floor 20050006 Rio de Janeiro Brazil Phone: +55 21 2517 7232